cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 87 results. Next

A344294 5-smooth but not 3-smooth numbers k such that A056239(k) >= 2*A001222(k).

Original entry on oeis.org

5, 10, 15, 25, 30, 45, 50, 75, 90, 100, 125, 135, 150, 225, 250, 270, 300, 375, 405, 450, 500, 625, 675, 750, 810, 900, 1000, 1125, 1215, 1250, 1350, 1500, 1875, 2025, 2250, 2430, 2500, 2700, 3000, 3125, 3375, 3645, 3750, 4050, 4500, 5000, 5625, 6075, 6250
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A number is d-smooth iff its prime divisors are all <= d.
A prime index of k is a number m such that prime(m) divides k, and the multiset of prime indices of k is row k of A112798. This row has length A001222(k) and sum A056239(k).

Examples

			The sequence of terms together with their prime indices begins:
       5: {3}           270: {1,2,2,2,3}
      10: {1,3}         300: {1,1,2,3,3}
      15: {2,3}         375: {2,3,3,3}
      25: {3,3}         405: {2,2,2,2,3}
      30: {1,2,3}       450: {1,2,2,3,3}
      45: {2,2,3}       500: {1,1,3,3,3}
      50: {1,3,3}       625: {3,3,3,3}
      75: {2,3,3}       675: {2,2,2,3,3}
      90: {1,2,2,3}     750: {1,2,3,3,3}
     100: {1,1,3,3}     810: {1,2,2,2,2,3}
     125: {3,3,3}       900: {1,1,2,2,3,3}
     135: {2,2,2,3}    1000: {1,1,1,3,3,3}
     150: {1,2,3,3}    1125: {2,2,3,3,3}
     225: {2,2,3,3}    1215: {2,2,2,2,2,3}
     250: {1,3,3,3}    1250: {1,3,3,3,3}
		

Crossrefs

Allowing any number of parts and sum gives A080193, counted by A069905.
The partitions with these Heinz numbers are counted by A325691.
Relaxing the smoothness conditions gives A344291, counted by A110618.
Allowing 3-smoothness gives A344293, counted by A266755.
A025065 counts partitions of n with at least n/2 parts, ranked by A344296.
A035363 counts partitions of n whose length is n/2, ranked by A340387.
A051037 lists 5-smooth numbers (complement: A279622).
A056239 adds up prime indices, row sums of A112798.
A257993 gives the least gap of the partition with Heinz number n.
A300061 lists numbers with even sum of prime indices (5-smooth: A344297).
A342050/A342051 list Heinz numbers of partitions with even/odd least gap.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]==5&]

Formula

Intersection of A080193 and A344291.

A014591 a(n) = floor(n^2/12 + 5/4).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 20, 22, 25, 28, 31, 34, 38, 41, 45, 49, 53, 57, 62, 66, 71, 76, 81, 86, 92, 97, 103, 109, 115, 121, 128, 134, 141, 148, 155, 162, 170, 177, 185, 193, 201, 209, 218, 226, 235, 244, 253, 262, 272, 281, 291, 301, 311, 321
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n + 10 into 4 distinct parts one of which is 3. - Michael Somos, Nov 03 2011
Number of partitions of n into 3 or fewer distinct parts. - Mo Li, Sep 27 2019

Examples

			1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 8*x^9 + ...
10 = 4 + 3 + 2 + 1, 11 = 5 + 3 + 2 + 1, 12 = 6 + 3 + 2 + 1, 13 = 7 + 3 + 2 + 1 = 5 + 4 + 3 + 1, 14 = 8 + 3 + 2 + 1 = 5 + 4 + 3 + 2, 15 = 9 + 3 + 2 + 1 = 6 + 5 + 3 + 1 = 6 + 4 + 3 + 2.
		

Crossrefs

It may be only a coincidence that the first 11 terms reproduce all available data on Vassiliev invariants from diagrams with u=2 univalent vertices, as recorded in the Kneissler paper.

Programs

  • Mathematica
    Floor[Range[0,70]^2/12+5/4] (* Harvey P. Dale, Oct 22 2013 *)
    Table[Length[Select[IntegerPartitions[k, 3], DuplicateFreeQ]], {k,1,50}] (* Mo Li, Sep 27 2019 *)
  • PARI
    {a(n) = (n^2 + 3) \ 12 + 1} /* Michael Somos, Nov 03 2011 */

Formula

G.f.: (1/(1-x^3)-x^2)/(1-x)/(1-x^2).
a(-n) = a(n). a(n) = 1 + A069905(n). - Michael Somos, Nov 03 2011

Extensions

More terms from Erich Friedman

A060022 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 3.

Original entry on oeis.org

1, 0, 1, 0, 0, -1, -1, -3, -3, -5, -6, -8, -9, -12, -13, -16, -18, -21, -23, -27, -29, -33, -36, -40, -43, -48, -51, -56, -60, -65, -69, -75, -79, -85, -90, -96, -101, -108, -113, -120, -126, -133, -139, -147, -153, -161, -168, -176, -183, -192, -199, -208, -216, -225, -233, -243, -251, -261, -270, -280
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference between the number of partitions of n+2 into 2 parts and the number of partitions of n+2 into 3 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: this sequence (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • PARI
    Vec((1 - x - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, Apr 17 2019

Formula

a(n) = A004526(n+2) - A069905(n+2). - Wesley Ivan Hurt, Apr 16 2019
From Colin Barker, Apr 17 2019: (Start)
G.f.: (1 - x - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>5.
(End)

A060023 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 4.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, -1, -1, -3, -4, -7, -8, -13, -15, -20, -24, -31, -35, -44, -50, -60, -68, -80, -89, -104, -115, -131, -145, -164, -179, -201, -219, -243, -264, -291, -314, -345, -371, -404, -434, -471, -503, -544, -580, -624, -664, -712, -755, -808, -855, -911, -963, -1024, -1079, -1145
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+3 into 3 parts and the number of partitions of n+3 into 4 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), this sequence (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • Magma
    I:=[1,0,1,1,1,0,1,-1,-1,-3]; [n le 10 select I[n] else Self(n-1)+Self(n-2)-2*Self(n-5)+Self(n-8)+Self(n-9)-Self(n-10): n in [1..60]]; // Vincenzo Librandi, Jun 23 2015
    
  • Mathematica
    CoefficientList[Series[(1-x-x^4)/Times@@(1-x^Range[4]),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1},{1,0,1,1,1,0,1,-1,-1,-3},70] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    Vec((1 - x - x^4) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, Apr 17 2019

Formula

a(n) = A069905(n+3) - A026810(n+3). - Wesley Ivan Hurt, Apr 16 2019
From Colin Barker, Apr 17 2019: (Start)
G.f.: (1 - x - x^4) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>9.
(End)

A325688 Number of length-3 compositions of n such that every distinct consecutive subsequence has a different sum.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 5, 12, 12, 25, 24, 40, 41, 60, 60, 85, 84, 112, 113, 144, 144, 181, 180, 220, 221, 264, 264, 313, 312, 364, 365, 420, 420, 481, 480, 544, 545, 612, 612, 685, 684, 760, 761, 840, 840, 925, 924, 1012, 1013, 1104, 1104, 1201, 1200, 1300, 1301, 1404
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Confirmed recurrence relation from Colin Barker for n <= 5000. - Fausto A. C. Cariboni, Feb 13 2022

Examples

			The a(3) = 1 through a(8) = 12 compositions:
  (111)  (113)  (114)  (115)  (116)
         (122)  (132)  (124)  (125)
         (221)  (222)  (133)  (143)
         (311)  (231)  (142)  (152)
                (411)  (214)  (215)
                       (223)  (233)
                       (241)  (251)
                       (322)  (332)
                       (331)  (341)
                       (412)  (512)
                       (421)  (521)
                       (511)  (611)
		

Crossrefs

Column k = 3 of A325687.
Cf. A000217 (all length-3).

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + 2*x^2 + 4*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^2*(1 + x + x^2)).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n>7.
(End)

A325690 Number of length-3 integer partitions of n whose largest part is not the sum of the other two.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 4, 3, 7, 6, 10, 9, 14, 13, 19, 17, 24, 23, 30, 28, 37, 35, 44, 42, 52, 50, 61, 58, 70, 68, 80, 77, 91, 88, 102, 99, 114, 111, 127, 123, 140, 137, 154, 150, 169, 165, 184, 180, 200, 196, 217, 212, 234, 230, 252, 247, 271, 266, 290, 285, 310
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

Confirmed recurrence relation from Colin Barker for n <= 10000. - Fausto A. C. Cariboni, Feb 19 2022

Examples

			The a(3) = 1 through a(13) = 14 partitions (A = 10, B = 11):
  (111)  (221)  (222)  (322)  (332)  (333)  (433)  (443)  (444)   (544)
         (311)  (411)  (331)  (521)  (432)  (442)  (533)  (543)   (553)
                       (421)  (611)  (441)  (622)  (542)  (552)   (643)
                       (511)         (522)  (631)  (551)  (732)   (652)
                                     (531)  (721)  (632)  (741)   (661)
                                     (621)  (811)  (641)  (822)   (733)
                                     (711)         (722)  (831)   (742)
                                                   (731)  (921)   (751)
                                                   (821)  (A11)   (832)
                                                   (911)          (841)
                                                                  (922)
                                                                  (931)
                                                                  (A21)
                                                                  (B11)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^3*(1 + x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8.
(End)

A360010 First part of the n-th weakly decreasing triple of positive integers sorted lexicographically. Each n > 0 is repeated A000217(n) times.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8
Offset: 1

Views

Author

Gus Wiseman, Feb 11 2023

Keywords

Examples

			Triples begin: (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), (3,3,3), ...
		

Crossrefs

For pairs instead of triples we have A002024.
Positions of first appearances are A050407(n+2) = A000292(n)+1.
The zero-based version is A056556.
The triples have sums A070770.
The second instead of first part is A194848.
The third instead of first part is A333516.
Concatenating all the triples gives A360240.

Programs

  • Mathematica
    nn=9;First/@Select[Tuples[Range[nn],3],GreaterEqual@@#&]
  • Python
    from math import comb
    from sympy import integer_nthroot
    def A360010(n): return (m:=integer_nthroot(6*n,3)[0])+(n>comb(m+2,3)) # Chai Wah Wu, Nov 04 2024

Formula

a(n) = A056556(n) + 1 = A331195(3n) + 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + log(2)/4. - Amiram Eldar, Feb 18 2024
a(n) = m+1 if n>binomial(m+2,3) and a(n) = m otherwise where m = floor((6n)^(1/3)). - Chai Wah Wu, Nov 04 2024

A375580 a(n) is the number of partitions n = x + y + z of positive integers such that x*y*z is a perfect cube.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 1, 2, 3, 2, 2, 3, 2, 0, 1, 1, 3, 1, 3, 2, 2, 1, 1, 1, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 1, 4, 2, 2, 2, 3, 1, 2, 3, 1, 3, 4, 1, 3, 2, 2, 1, 2, 2, 3, 3, 2, 4
Offset: 0

Views

Author

Felix Huber, Aug 19 2024

Keywords

Comments

a(n) is also the number of distinct integer-sided cuboids with total edge length 4*n whose unit cubes can be grouped to a cube.
Conjecture: for n > 176, a(n) > 0. - Charles R Greathouse IV, Aug 20 2024

Examples

			a(21) = 3 because the three partitions [1, 4, 16], [3, 6, 12], [7, 7, 7] satisfy the conditions: 1 + 4 + 16 = 21 and 1*4*16 = 4^3, 3 + 6 + 12 = 21 and 3*6*12 = 6^3, 7 + 7 + 7 = 21 and 7*7*7 = 7^3.
See also linked Maple code.
		

Crossrefs

Programs

  • Maple
    # See Huber link.
  • PARI
    a(n)=sum(x=1,n\3, sum(y=x,(n-x)\2, ispower(x*y*(n-x-y),3))) \\ Charles R Greathouse IV, Aug 20 2024
    
  • PARI
    \\ See Corneth link
    
  • Python
    from sympy import integer_nthroot
    def A375580(n): return sum(1 for x in range(n//3) for y in range(x,n-x-1>>1) if integer_nthroot((n-x-y-2)*(x+1)*(y+1),3)[1]) # Chai Wah Wu, Aug 21 2024

Formula

Trivial upper bound: a(n) <= A069905(n). - Charles R Greathouse IV, Aug 23 2024

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1

Views

Author

K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001

Keywords

Comments

a(m) = a(n) if m and n have same factorization structure.

Examples

			a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
		

References

  • Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.

Crossrefs

Positions of zeros are A000961.
Positions of ones are A006881.
The version for subsets of {1..n} instead of divisors is A015617.
The non-strict ordered version is A048785.
The version for pairs of divisors is A063647.
The non-strict version (3-multisets) is A100565.
The version for partitions is A220377 (non-strict: A307719).
A version for sets of divisors of any size is A225520.
A000005 counts divisors.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A018892 counts unordered pairs of coprime divisors (ordered: A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
  • PARI
    A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017

Formula

In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
a(n) = (tau(n^3)-3*tau(n)+2)/6. - Vladeta Jovovic, Nov 27 2004

Extensions

More terms from Vladeta Jovovic, Apr 03 2003
Name corrected by Andrey Zabolotskiy, Dec 09 2020
Name corrected by Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))

A060277 Number of m for which a+b+c = n; abc = m has at least two distinct solutions (a,b,c) with 1 <= a <= b <= c.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 3, 2, 7, 3, 2, 5, 4, 3, 5, 9, 2, 5, 6, 9, 5, 9, 14, 9, 7, 5, 10, 10, 11, 18, 7, 11, 16, 14, 12, 12, 23, 19, 13, 18, 11, 20, 19, 32, 17, 21, 18, 25, 19, 21, 27, 22, 21, 31, 27, 24, 28, 42, 34, 33, 21, 28, 31, 35, 47
Offset: 1

Views

Author

Naohiro Nomoto, Mar 23 2001

Keywords

Comments

A triple (a,b,c) as described in the name cannot have c prime. - David A. Corneth, Aug 01 2018

Examples

			(14 = 6+6+2 = 8+3+3, 72 = 6*6*2 = 8*3*3); (14 = 8+5+1 = 10+2+2, 40 = 8*5*1 = 10*2*2); 14 has two "m" variables. so a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[ Tally[ Times @@@ IntegerPartitions[n, {3}]], {m_,c_} /; c>1]; Array[a, 84] (* Giovanni Resta, Jul 27 2018 *)
  • PARI
    a(n)={my(M=Map()); for(i=n\3, n, for(j=(n-i+1)\2, min(n-1-i, i), my(k=n-i-j); my(m=i*j*k); my(z); mapput(M, m, if(mapisdefined(M, m, &z), z + 1, 1)))); #select(z->z>=2, if(#M, Mat(M)[, 2], []))} \\ Andrew Howroyd, Jul 27 2018

Formula

a(n) = Sum_{k>=2} A317578(n,k). - Alois P. Heinz, Aug 01 2018

Extensions

Description revised by David W. Wilson and Don Reble, Jun 04 2002
Previous Showing 41-50 of 87 results. Next