cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 104 results. Next

A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2).

Original entry on oeis.org

0, 8, 8, 4, 8, 3, 3, 8, 2, 4, 5, 4, 3, 6, 8, 7, 1, 4, 2, 9, 4, 3, 2, 7, 8, 3, 9, 0, 8, 5, 7, 6, 0, 4, 5, 6, 6, 4, 7, 9, 7, 8, 7, 5, 2, 3, 8, 6, 7, 5, 0, 5, 9, 1, 6, 7, 4, 8, 8, 9, 2, 7, 6, 5, 5, 9, 4, 7, 4, 2, 7, 8, 9, 2, 8, 7, 4, 3, 5, 7, 1, 4, 5, 5, 8, 2, 7, 7, 9, 4, 6, 0, 0, 4, 7, 0, 5, 8, 6, 6, 1, 9, 5, 5, 9, 6, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.088483382454368714294327839085760456647978752386750591674889276559474...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First]
  • PARI
    zetamult([4,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6).

A258985 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,2).

Original entry on oeis.org

0, 3, 8, 5, 7, 5, 1, 2, 4, 3, 4, 2, 7, 5, 3, 2, 5, 5, 5, 0, 5, 9, 2, 5, 4, 6, 4, 3, 7, 2, 9, 9, 5, 5, 7, 0, 0, 1, 9, 7, 3, 4, 8, 4, 1, 6, 9, 8, 9, 0, 9, 0, 0, 8, 3, 3, 1, 0, 4, 9, 3, 7, 2, 9, 3, 3, 5, 8, 2, 3, 6, 5, 9, 1, 0, 8, 4, 5, 3, 8, 3, 6, 5, 5, 6, 8, 4, 8, 8, 2, 9, 4, 6, 4, 5, 6, 4, 7, 3, 1, 5, 5, 6, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.03857512434275325550592546437299557001973484169890900833104937293358...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[5*Zeta[2]*Zeta[5] + 2*Zeta[3]*Zeta[4] - 11*Zeta[7], 10, 104] // First]
  • PARI
    zetamult([5,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(5,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n^2)) = 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 11*zeta(7).

A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).

Original entry on oeis.org

7, 1, 1, 5, 6, 6, 1, 9, 7, 5, 5, 0, 5, 7, 2, 4, 3, 2, 0, 9, 6, 9, 7, 3, 8, 0, 6, 0, 8, 6, 4, 0, 2, 6, 1, 2, 0, 9, 2, 5, 6, 1, 2, 0, 4, 4, 3, 8, 3, 3, 9, 2, 3, 6, 4, 9, 2, 2, 2, 2, 4, 9, 6, 4, 5, 7, 6, 8, 6, 0, 8, 5, 7, 4, 5, 0, 5, 8, 2, 6, 5, 1, 1, 5, 4, 2, 5, 2, 3, 4, 4, 6, 3, 6, 0, 0, 7, 9, 8, 9, 6, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.711566197550572432096973806086402612092561204438339236492222496457686...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

  • Mathematica
    RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
  • PARI
    zetamult([2,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
Equals Sum_{i, j >= 1} 1/(i^3*j^2*binomial(i+j, i)). More generally, for n >= 2, Sum_{i, j >= 1} 1/(i^n*j^2*binomial(i+j, i)) = zeta(2)*zeta(n) - zeta(n+2) - zeta(n,2). - Peter Bala, Aug 05 2025

A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).

Original entry on oeis.org

0, 8, 5, 1, 5, 9, 8, 2, 2, 5, 3, 4, 8, 3, 3, 6, 5, 1, 4, 0, 6, 8, 0, 6, 0, 1, 8, 8, 7, 2, 3, 6, 7, 3, 4, 5, 9, 5, 7, 3, 3, 9, 5, 0, 8, 5, 8, 6, 8, 7, 7, 3, 2, 0, 4, 6, 7, 1, 0, 3, 4, 3, 2, 0, 5, 3, 3, 0, 8, 5, 7, 6, 7, 5, 0, 8, 7, 1, 7, 6, 6, 5, 1, 1, 1, 7, 3, 3, 8, 6, 7, 5, 8, 1, 8, 5, 0, 2, 0, 7, 2, 0, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.0851598225348336514068060188723673459573395085868773204671034320533...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]
  • PARI
    zetamult([4,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).

A258990 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).

Original entry on oeis.org

2, 0, 7, 5, 0, 5, 0, 1, 4, 6, 1, 5, 7, 3, 2, 0, 9, 5, 9, 0, 7, 8, 0, 7, 6, 0, 5, 4, 9, 4, 6, 7, 1, 4, 6, 5, 4, 4, 1, 8, 2, 8, 6, 7, 9, 5, 5, 0, 6, 0, 6, 1, 9, 0, 4, 1, 9, 5, 1, 7, 8, 9, 6, 5, 6, 9, 7, 1, 0, 1, 1, 9, 9, 7, 1, 6, 0, 7, 8, 0, 0, 7, 8, 0, 9, 8, 6, 6, 4, 3, 6, 3, 3, 0, 5, 2, 3, 0, 2, 0, 2, 9, 6, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.20750501461573209590780760549467146544182867955060619041951789656971...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[10*Zeta[2]*Zeta[5] + Zeta[3]*Zeta[4] - 18*Zeta[7], 10, 105] // First
  • PARI
    zetamult([3,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(3,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^4)) = 10*zeta(2)*zeta(5) + zeta(3)*zeta(4) - 18*zeta(7).

A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).

Original entry on oeis.org

0, 8, 3, 6, 7, 3, 1, 1, 3, 0, 1, 6, 4, 9, 5, 3, 6, 1, 6, 1, 4, 8, 9, 0, 4, 3, 6, 5, 4, 2, 3, 8, 7, 7, 0, 5, 4, 3, 8, 2, 4, 6, 7, 3, 2, 5, 5, 4, 1, 5, 4, 1, 6, 8, 3, 6, 0, 7, 5, 9, 1, 8, 3, 5, 5, 4, 3, 8, 1, 9, 1, 2, 7, 1, 4, 5, 6, 2, 4, 0, 1, 1, 9, 9, 6, 0, 7, 2, 6, 9, 1, 9, 7, 6, 9, 7, 6, 6, 4, 2, 6, 0, 3, 7, 6, 9, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.08367311301649536161489043654238770543824673255415416836075918355438...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4).

Programs

Formula

zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).

A025281 a(n) = sopfr(n!), where sopfr = A001414 is the integer log.

Original entry on oeis.org

0, 0, 2, 5, 9, 14, 19, 26, 32, 38, 45, 56, 63, 76, 85, 93, 101, 118, 126, 145, 154, 164, 177, 200, 209, 219, 234, 243, 254, 283, 293, 324, 334, 348, 367, 379, 389, 426, 447, 463, 474, 515, 527, 570, 585, 596, 621, 668, 679, 693, 705, 725, 742, 795, 806, 822, 835, 857, 888
Offset: 0

Views

Author

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 144.

Crossrefs

Partial sums of A001414.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          a(n-1)+add(i[1]*i[2], i=ifactors(n)[2]))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Apr 09 2021
  • Mathematica
    sopfr[n_] := Plus @@ Times @@@ FactorInteger@ n; a[n_] := a[n] = a[n - 1] + sopfr[n]; a[0] = a[1] = 0; Array[a, 59, 0] (* Robert G. Wilson v, May 18 2015 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,sum(i=1,omega(k), component(component(factor(k),1),i)*component(component(factor(k),2),i))),","))
    
  • Python
    from sympy import factorial, factorint
    def A025281(n): return sum(p*e for p, e in factorint(factorial(n)).items()) # Chai Wah Wu, Apr 09 2021

Formula

a(n) = A001414(A000142(n)).
From Benoit Cloitre, Apr 14 2002: (Start)
a(0)=0; for n>0, a(n) = Sum_{k=1..n} A001414(k).
Asymptotic formula: a(n) ~ (Pi^2/12)*n^2/log(n). [Proven by Alladi and Erdős (1977). - Amiram Eldar, Mar 04 2021]
(End)

A107758 (+2)Sigma(n): If n = Product p_i^r_i then a(n) = Product (2 + Sum p_i^s_i, s_i=1 to r_i) = Product (1 + (p_i^(r_i+1)-1)/(p_i-1)), a(1) = 1.

Original entry on oeis.org

1, 4, 5, 8, 7, 20, 9, 16, 14, 28, 13, 40, 15, 36, 35, 32, 19, 56, 21, 56, 45, 52, 25, 80, 32, 60, 41, 72, 31, 140, 33, 64, 65, 76, 63, 112, 39, 84, 75, 112, 43, 180, 45, 104, 98, 100, 49, 160, 58, 128, 95, 120, 55, 164, 91, 144, 105, 124, 61, 280, 63, 132, 126, 128, 105, 260, 69, 152, 125, 252, 73, 224, 75, 156, 160
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 25 2005

Keywords

Examples

			a(6) = (2+2)*(2+3) = 20.
		

Crossrefs

Cf. A052396 (k such that a(k) = 2k), A387720 (k such that a(k) < 2k), A387721 (k such that a(k) > 2k), A387725, A386390 (k such that k-1 | a(k)).

Programs

  • Maple
    A107758 := proc(n) local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; mul( 1+(op(1,p)^(op(2,p)+1)-1)/(op(1,p)-1), p=pf) ; end if; end proc:
    seq(A107758(n),n=1..60) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    Table[DivisorSum[n, DivisorSigma[1, #] &, CoprimeQ[n/#, #] &], {n, 54}] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := 1 + (p^(e + 1) - 1)/(p - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 26 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, sigma(d))); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); }; \\ Antti Karttunen, Sep 06 2025

Formula

a(n) = Sum_{d|n, gcd(n/d, d) = 1} sigma(d), where sigma(d) is the sum of the divisors of d. - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.0741158... . - Amiram Eldar, Nov 01 2022

Extensions

More terms from Antti Karttunen, Sep 06 2025

A244583 a(n) = sum of all divisors of all positive integers <= prime(n).

Original entry on oeis.org

4, 8, 21, 41, 99, 141, 238, 297, 431, 690, 794, 1136, 1384, 1524, 1806, 2304, 2846, 3076, 3699, 4137, 4406, 5128, 5645, 6499, 7755, 8401, 8721, 9393, 9783, 10513, 13280, 14095, 15443, 15871, 18232, 18756, 20320, 21873, 22875, 24604, 26274, 27002, 29982, 30684
Offset: 1

Views

Author

Omar E. Pol, Jun 30 2014

Keywords

Comments

Limit_{n->oo} a(n)/prime(n)^2 = zeta(2)/2 = Pi^2/12 = A072691 = 0.82246703342.... For example, at n = 2*10^6, the ratio converges to 0.822467033... (+-2 in the last digit with increments on n of +100). If the ratio is calculated with a nonprime for the upper summation limit then the ratio runs slightly larger and converges slower. See formula section of A024916 for the general case. - Richard R. Forberg, Jan 04 2015
This is a subsequence of A024916 therefore a(n) also has a symmetric representation. For more information see A236104, A237593. - Omar E. Pol, Jan 05 2015

Crossrefs

Programs

  • Mathematica
    a244583[n_] := Sum[DivisorSigma[1, i], {i, #}] & /@ Prime[Range@n]; a244583[44] (* Michael De Vlieger, Jan 06 2015 *)
  • PARI
    a(n) = sum(i=1, prime(n), sigma(i)); \\ Michel Marcus, Sep 29 2014
    
  • Python
    from math import isqrt
    from sympy import prime
    def A244583(n): return -(s:=isqrt(p:=prime(n)))**2*(s+1) + sum((q:=p//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A024916(A000040(n)).
a(n) = A001248(n) - A050482(n). - Omar E. Pol, Jan 05 2015

Extensions

More terms from Michel Marcus, Sep 29 2014

A275703 Decimal expansion of the Dirichlet eta function at 6.

Original entry on oeis.org

9, 8, 5, 5, 5, 1, 0, 9, 1, 2, 9, 7, 4, 3, 5, 1, 0, 4, 0, 9, 8, 4, 3, 9, 2, 4, 4, 4, 8, 4, 9, 5, 4, 2, 6, 1, 4, 0, 4, 8, 8, 5, 6, 9, 3, 4, 6, 9, 3, 2, 6, 8, 8, 8, 0, 3, 4, 8, 3, 3, 3, 9, 3, 2, 5, 4, 1, 9, 6, 8, 0, 2, 1, 8, 6, 2, 7, 1, 7, 1, 3, 5, 7, 3, 9, 3, 7, 2, 9, 1, 1, 2, 7, 9, 5, 5, 9, 4, 6, 4
Offset: 0

Views

Author

Terry D. Grant, Aug 05 2016

Keywords

Comments

It appears that each sum of a Dirichlet eta function is 1/2^(x-1) less than the zeta(x), where x is a positive integer > 1. In this case, eta(x) = eta(6) = (31/32)*zeta(6) = 31*(Pi^6)/30240. Therefore eta(6) = 1/2^(6-1) or 1/32nd less than zeta(6) (see A013664). [Edited by Petros Hadjicostas, May 07 2020]

Examples

			31*(Pi^6)/30240 = 0.9855510912974...
		

Crossrefs

Cf. A002162 (decimal expansion of value at 1), A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275710 (value at 7).

Programs

  • Mathematica
    RealDigits[31*(Pi^6)/30240,10,100]
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^6
    print(s) # Terry D. Grant, Aug 05 2016

Formula

eta(6) = 31*(Pi^6)/30240 = 31*A092732/30240 = Sum_{n>=1} (-1)^(n+1)/n^6.
eta(6) = lim_{n -> infinity} A136677(n)/A334605(n). - Petros Hadjicostas, May 07 2020
Previous Showing 31-40 of 104 results. Next