cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A056242 Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 1, 9, 16, 8, 1, 14, 41, 44, 16, 1, 20, 85, 146, 112, 32, 1, 27, 155, 377, 456, 272, 64, 1, 35, 259, 833, 1408, 1312, 640, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 1, 54, 606, 3024, 8361, 14002, 14608, 9312, 3328, 512, 1, 65, 870, 5202
Offset: 1

Views

Author

Colin Mallows, Aug 23 2000

Keywords

Comments

Generalized Riordan array (1/(1-x), x/(1-x) + x*dif(x/1-x),x)). - Paul Barry, Dec 26 2007
Reversal of A117317. - Philippe Deléham, Feb 11 2012
Essentially given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 11 2012
This sequence is given in the Strehl presentation with the o.g.f. (1-z)/[1-2(1+t)z+(1+t)z^2], with offset 0, along with a recursion relation, a combinatorial interpretation, and relations to Hermite and Laguerre polynomials. Note that the o.g.f. is related to that of A049310. - Tom Copeland, Jan 08 2017
From Gus Wiseman, Mar 06 2020: (Start)
T(n,k) is also the number of unimodal length-n sequences covering an initial interval of positive integers with maximum part k, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the sequences counted by row n = 4 are:
(1111) (1112) (1123) (1234)
(1121) (1132) (1243)
(1122) (1223) (1342)
(1211) (1231) (1432)
(1221) (1232) (2341)
(1222) (1233) (2431)
(2111) (1321) (3421)
(2211) (1322) (4321)
(2221) (1332)
(2231)
(2311)
(2321)
(2331)
(3211)
(3221)
(3321)
(End)
T(n,k) is the number of hexagonal directed-column convex polyominoes of area n with k columns (see Baril et al. at page 9). - Stefano Spezia, Oct 14 2023

Examples

			Triangle begins:
  1;
  1,    2;
  1,    5,    4;
  1,    9,   16,    8;
  1,   14,   41,   44,   16;
  1,   20,   85,  146,  112,   32;
  1,   27,  155,  377,  456,  272,   64;
  1,   35,  259,  833, 1408, 1312,  640,  128;
  1,   44,  406, 1652, 3649, 4712, 3568, 1472,  256;
T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3}{12} and {2}{13}.
Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
  1;
  1,   0;
  1,   2,   0;
  1,   5,   4,   0;
  1,   9,  16,   8,   0;
  1,  14,  41,  44,  16,   0;
  1,  20,  85, 146, 112,  32,   0;
  1,  27, 155, 377, 456, 272,  64,   0;
		

Crossrefs

Row sums are A007052.
Column k = n - 1 is A053220.
Ordered set-partitions are A000670.

Programs

  • Haskell
    a056242 n k = a056242_tabl !! (n-1)!! (k-1)
    a056242_row n = a056242_tabl !! (n-1)
    a056242_tabl = [1] : [1,2] : f [1] [1,2] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (map (* 2) $ zipWith (+) ([0] ++ vs) (vs ++ [0]))
                          (zipWith (+) ([0] ++ us ++ [0]) (us ++ [0,0]))
    -- Reinhard Zumkeller, May 08 2014
  • Maple
    T:=proc(n,k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..12);
  • Mathematica
    rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011 *)

Formula

The Hwang and Mallows reference gives explicit formulas.
T(n,k) = Sum_{j=0..k-1} (-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2j-1, 2j) (1<=k<=n); this is formula (11) in the Huang and Mallows reference.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(1,1) = 1, T(2,1) = 1, T(2,2) = 2. - Philippe Deléham, Feb 11 2012
G.f.: -(-1+x)*x*y/(1-2*x-2*x*y+x^2*y+x^2). - R. J. Mathar, Aug 11 2015

A332836 Number of compositions of n whose run-lengths are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 24, 40, 73, 128, 230, 399, 712, 1241, 2192, 3833, 6746, 11792, 20711, 36230, 63532, 111163, 194782, 340859, 596961, 1044748, 1829241, 3201427, 5604504, 9808976, 17170112, 30051470, 52601074, 92063629, 161140256, 282033124, 493637137, 863982135, 1512197655
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions whose run-lengths are weakly decreasing.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (121)   (41)
                        (211)   (122)
                        (1111)  (131)
                                (212)
                                (311)
                                (1211)
                                (2111)
                                (11111)
For example, the composition (2,3,2,2,1,1,2,2,2) has run-lengths (1,1,2,2,3) so is counted under a(17).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A000041.
The case of partitions is A100883.
The case of unsorted prime signature is A304678, with dual A242031.
Permitting the run-lengths to be weakly decreasing also gives A332835.
The complement is counted by A332871.
Unimodal compositions are A001523.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Length/@Split[#]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    seq(n)={my(M=matrix(n+1, n, i, j, i==1)); for(m=1, n, M=step(M, m)); M[1,n]=0; vector(n+1, i, vecsum(M[i,]))/(n-1)} \\ Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332643 Neither the unsorted prime signature of a(n) nor the negated unsorted prime signature of a(n) is unimodal.

Original entry on oeis.org

2100, 3300, 3900, 4200, 4410, 5100, 5700, 6468, 6600, 6900, 7644, 7800, 8400, 8700, 9300, 9996, 10200, 10500, 10780, 10890, 11100, 11172, 11400, 12300, 12740, 12900, 12936, 13200, 13230, 13524, 13800, 14100, 15210, 15246, 15288, 15600, 15900, 16500, 16660
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
   2100: {1,1,2,3,3,4}
   3300: {1,1,2,3,3,5}
   3900: {1,1,2,3,3,6}
   4200: {1,1,1,2,3,3,4}
   4410: {1,2,2,3,4,4}
   5100: {1,1,2,3,3,7}
   5700: {1,1,2,3,3,8}
   6468: {1,1,2,4,4,5}
   6600: {1,1,1,2,3,3,5}
   6900: {1,1,2,3,3,9}
   7644: {1,1,2,4,4,6}
   7800: {1,1,1,2,3,3,6}
   8400: {1,1,1,1,2,3,3,4}
   8700: {1,1,2,3,3,10}
   9300: {1,1,2,3,3,11}
   9996: {1,1,2,4,4,7}
  10200: {1,1,1,2,3,3,7}
  10500: {1,1,2,3,3,3,4}
  10780: {1,1,3,4,4,5}
  10890: {1,2,2,3,5,5}
		

Crossrefs

Not requiring non-unimodal negation gives A332282.
These are the Heinz numbers of the partitions counted by A332640.
Not requiring non-unimodality gives A332642.
The case of compositions is A332870.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unsorted prime signature is A124010.
Non-unimodal normal sequences are A328509.
Partitions whose 0-appended first differences are unimodal are A332283, with Heinz numbers the complement of A332287.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Partitions whose 0-appended first differences are not unimodal are A332744, with Heinz numbers A332832.
Numbers whose signature is neither increasing nor decreasing are A332831.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Select[Range[10000],!unimodQ[Last/@FactorInteger[#]]&&!unimodQ[-Last/@FactorInteger[#]]&]

Formula

Intersection of A332282 and A332642.

A332743 Number of non-unimodal compositions of n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 5, 14, 35, 83, 193, 417, 890, 1847, 3809, 7805, 15833, 32028, 64513, 129671, 260155, 521775, 1044982, 2092692, 4188168, 8381434, 16767650, 33544423, 67098683, 134213022, 268443023, 536912014, 1073846768, 2147720476, 4295440133, 8590833907
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(5) = 1 through a(7) = 14 compositions:
  (212)  (213)   (1213)
         (312)   (1312)
         (1212)  (2113)
         (2112)  (2122)
         (2121)  (2131)
                 (2212)
                 (3112)
                 (3121)
                 (11212)
                 (12112)
                 (12121)
                 (21112)
                 (21121)
                 (21211)
		

Crossrefs

Not requiring non-unimodality gives A107429.
Not requiring the covering condition gives A115981.
The complement is counted by A227038.
A version for partitions is A332579, with complement A332577.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal normal sequences are A328509.
Numbers whose unsorted prime signature is not unimodal are A332282.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&!unimodQ[#]&]],{n,0,10}]

Formula

For n > 0, a(n) = A107429(n) - A227038(n).

A072707 Number of non-unimodal compositions of n into distinct terms.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 2, 4, 6, 24, 26, 46, 64, 100, 224, 276, 416, 590, 850, 1144, 2214, 2644, 3938, 5282, 7504, 9776, 13704, 21984, 27632, 38426, 51562, 69844, 91950, 123504, 159658, 246830, 303400, 416068, 540480, 730268, 933176, 1248110
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Comments

Also the number of compositions of n into distinct terms whose negation is not unimodal. - Gus Wiseman, Mar 05 2020

Examples

			a(6)=2 since 6 can be written as 2+1+3 or 3+1+2.
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(6) = 2 through a(9) = 6 strict compositions:
  (2,1,3)  (2,1,4)  (2,1,5)  (2,1,6)
  (3,1,2)  (4,1,2)  (3,1,4)  (3,1,5)
                    (4,1,3)  (3,2,4)
                    (5,1,2)  (4,2,3)
                             (5,1,3)
                             (6,1,2)
(End)
		

Crossrefs

The complement is counted by A072706.
The non-strict version is A115981.
The case where the negation is not unimodal either is A332874.
Unimodal compositions are A001523.
Strict compositions are A032020.
Non-unimodal permutations are A059204.
A triangle for strict unimodal compositions is A072705.
Non-unimodal sequences covering an initial interval are A328509.
Numbers whose prime signature is not unimodal are A332282.
Strict partitions whose 0-appended differences are not unimodal are A332286.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&]],{n,0,16}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) = A032020(n) - A072706(n) = Sum_{k} A059204(k) * A060016(n, k).

A072705 Triangle of number of unimodal compositions of n into exactly k distinct terms.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 0, 0, 1, 4, 0, 0, 0, 1, 4, 4, 0, 0, 0, 1, 6, 4, 0, 0, 0, 0, 1, 6, 8, 0, 0, 0, 0, 0, 1, 8, 12, 0, 0, 0, 0, 0, 0, 1, 8, 16, 8, 0, 0, 0, 0, 0, 0, 1, 10, 20, 8, 0, 0, 0, 0, 0, 0, 0, 1, 10, 28, 16, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 32, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 40, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Comments

Also the number of compositions of n into exactly k distinct terms whose negation is unimodal. - Gus Wiseman, Mar 06 2020

Examples

			Rows start: 1; 1,0; 1,2,0; 1,2,0,0; 1,4,0,0,0; 1,4,4,0,0,0; 1,6,4,0,0,0,0; 1,6,8,0,0,0,0,0; etc. T(6,3)=4 since 6 can be written as 1+2+3, 1+3+2, 2+3+1, or 3+2+1 but not 2+1+3 or 3+1+2.
From _Gus Wiseman_, Mar 06 2020: (Start)
Triangle begins:
  1
  1  0
  1  2  0
  1  2  0  0
  1  4  0  0  0
  1  4  4  0  0  0
  1  6  4  0  0  0  0
  1  6  8  0  0  0  0  0
  1  8 12  0  0  0  0  0  0
  1  8 16  8  0  0  0  0  0  0
  1 10 20  8  0  0  0  0  0  0  0
  1 10 28 16  0  0  0  0  0  0  0  0
  1 12 32 24  0  0  0  0  0  0  0  0  0
  1 12 40 40  0  0  0  0  0  0  0  0  0  0
  1 14 48 48 16  0  0  0  0  0  0  0  0  0  0
(End)
		

Crossrefs

Cf. A060016, A072574, A072704. Row sums are A072706.
Column k = 2 is A052928.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Strict compositions are A032020.
Non-unimodal strict compositions are A072707.
Unimodal compositions covering an initial interval are A227038.
Numbers whose prime signature is not unimodal are A332282.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
          expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)*ceil(2^(i-1)), i=1..n))(b(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i > n, 0, x*b[n-i, i-1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i]* Ceiling[2^(i-1)], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],UnsameQ@@#&&unimodQ[#]&]],{n,12},{k,n}] (* Gus Wiseman, Mar 06 2020 *)

Formula

T(n,k) = 2^(k-1)*A060016(n,k) = T(n-k,k)+2*T(n-k,k-1) [starting with T(0,0)=0, T(0,1)=0 and T(n,1)=1 for n>0].

A332874 Number of strict compositions of n that are neither unimodal nor is their negation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 20, 30, 50, 150, 180, 290, 420, 630, 860, 1828, 2168, 3326, 4514, 6530, 8576, 12188, 20096, 25314, 35576, 48062, 65592, 86752, 117222, 152060, 237590, 292346, 402798, 524596, 711270, 910606, 1221204, 1554382, 2044460, 2927124
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n. It is strict if there are not repeated parts.

Examples

			The a(10) = 10 through a(12) = 20 compositions:
  (1,3,2,4)  (1,3,2,5)  (1,3,2,6)
  (1,4,2,3)  (1,5,2,3)  (1,4,2,5)
  (2,1,4,3)  (2,1,5,3)  (1,5,2,4)
  (2,3,1,4)  (2,3,1,5)  (1,6,2,3)
  (2,4,1,3)  (2,5,1,3)  (2,1,5,4)
  (3,1,4,2)  (3,1,5,2)  (2,1,6,3)
  (3,2,4,1)  (3,2,5,1)  (2,3,1,6)
  (3,4,1,2)  (3,5,1,2)  (2,4,1,5)
  (4,1,3,2)  (5,1,3,2)  (2,5,1,4)
  (4,2,3,1)  (5,2,3,1)  (2,6,1,3)
                        (3,1,6,2)
                        (3,2,6,1)
                        (3,6,1,2)
                        (4,1,5,2)
                        (4,2,5,1)
                        (4,5,1,2)
                        (5,1,4,2)
                        (5,2,4,1)
                        (6,1,3,2)
                        (6,2,3,1)
		

Crossrefs

The non-strict version for unsorted prime signature is A332643.
The non-strict version is A332870.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Compositions with neither weakly increasing nor weakly decreasing run-lengths are A332833.
Compositions with weakly increasing or weakly decreasing run-lengths are A332835.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&&!unimodQ[-#]&]],{n,0,20}]
  • PARI
    seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=4, n, (k! - 2^k + 2)*polcoef(p,k,y)), -(n+1))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=4} (k! - 2^k + 2) * [y^k](Product_{j>=1} 1 + y*x^j). - Andrew Howroyd, Apr 16 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Apr 16 2021

A332673 Triangle read by rows where T(n,k) is the number of length-k ordered set partitions of {1..n} whose non-adjacent blocks are pairwise increasing.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 14, 14, 5, 0, 1, 30, 45, 32, 8, 0, 1, 62, 124, 131, 65, 13, 0, 1, 126, 315, 438, 323, 128, 21, 0, 1, 254, 762, 1305, 1270, 747, 243, 34, 0, 1, 510, 1785, 3612, 4346, 3370, 1629, 452, 55
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

In other words, parts of subsequent, non-successive blocks are increasing.

Examples

			Triangle begins:
    1
    0    1
    0    1    2
    0    1    6    3
    0    1   14   14    5
    0    1   30   45   32    8
    0    1   62  124  131   65   13
    0    1  126  315  438  323  128   21
    0    1  254  762 1305 1270  747  243   34
    ...
Row n = 4 counts the following ordered set partitions:
  {1234}  {1}{234}  {1}{2}{34}  {1}{2}{3}{4}
          {12}{34}  {1}{23}{4}  {1}{2}{4}{3}
          {123}{4}  {12}{3}{4}  {1}{3}{2}{4}
          {124}{3}  {1}{24}{3}  {2}{1}{3}{4}
          {13}{24}  {12}{4}{3}  {2}{1}{4}{3}
          {134}{2}  {1}{3}{24}
          {14}{23}  {13}{2}{4}
          {2}{134}  {1}{34}{2}
          {23}{14}  {1}{4}{23}
          {234}{1}  {2}{1}{34}
          {24}{13}  {2}{13}{4}
          {3}{124}  {2}{14}{3}
          {34}{12}  {23}{1}{4}
          {4}{123}  {3}{12}{4}
		

Crossrefs

An apparently related triangle is A056242.
Column k = n - 1 is A332724.
Row sums are A332872, which appears to be A007052 shifted right once.
Ordered set-partitions are A000670.
Unimodal compositions are A001523.
Non-unimodal normal sequences are A328509.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==k&&!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,5},{k,0,n}]

A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal.

Examples

			The a(4) = 22 sequences:
  (1,2,1,2)  (2,3,1,3)
  (1,2,1,3)  (2,3,1,4)
  (1,3,1,2)  (2,4,1,3)
  (1,3,2,3)  (3,1,2,1)
  (1,3,2,4)  (3,1,3,2)
  (1,4,2,3)  (3,1,4,2)
  (2,1,2,1)  (3,2,3,1)
  (2,1,3,1)  (3,2,4,1)
  (2,1,3,2)  (3,4,1,2)
  (2,1,4,3)  (4,1,3,2)
  (2,3,1,2)  (4,2,3,1)
		

Crossrefs

Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A282748 Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_i, x_j) = 1 for all i != j (where 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 3, 4, 1, 1, 2, 9, 4, 5, 1, 1, 6, 3, 16, 5, 6, 1, 1, 4, 15, 4, 25, 6, 7, 1, 1, 6, 9, 28, 5, 36, 7, 8, 1, 1, 4, 21, 16, 45, 6, 49, 8, 9, 1, 1, 10, 9, 52, 25, 66, 7, 64, 9, 10, 1, 1, 4, 39, 16, 105, 36, 91, 8, 81, 10, 11, 1, 1, 12, 9, 100, 25, 186, 49, 120, 9, 100, 11, 12, 1, 1, 6, 45, 16, 205, 36, 301, 64, 153, 10, 121, 12, 13, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2017

Keywords

Comments

See A101391 for the triangle T(n,k) = number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (2 <= k <= n).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  2,  3,   1;
  1,  4,  3,   4,   1;
  1,  2,  9,   4,   5,   1;
  1,  6,  3,  16,   5,   6,  1;
  1,  4, 15,   4,  25,   6,  7,   1;
  1,  6,  9,  28,   5,  36,  7,   8,  1;
  1,  4, 21,  16,  45,   6, 49,   8,  9,   1;
  1, 10,  9,  52,  25,  66,  7,  64,  9,  10,  1;
  1,  4, 39,  16, 105,  36, 91,   8, 81,  10, 11,  1;
  1, 12,  9, 100,  25, 186, 49, 120,  9, 100, 11, 12, 1;
  ...
From _Gus Wiseman_, Nov 12 2020: (Start)
Row n = 6 counts the following compositions:
  (6)  (15)  (114)  (1113)  (11112)  (111111)
       (51)  (123)  (1131)  (11121)
             (132)  (1311)  (11211)
             (141)  (3111)  (12111)
             (213)          (21111)
             (231)
             (312)
             (321)
             (411)
(End)
		

Crossrefs

A072704 counts the unimodal instead of coprime version.
A087087 and A335235 rank these compositions.
A101268 gives row sums.
A101391 is the relatively prime instead of pairwise coprime version.
A282749 is the unordered version.
A000740 counts relatively prime compositions, with strict case A332004.
A007360 counts pairwise coprime or singleton strict partitions.
A051424 counts pairwise coprime or singleton partitions, ranked by A302569.
A097805 counts compositions by sum and length.
A178472 counts compositions with a common divisor.
A216652 and A072574 count strict compositions by sum and length.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A335235 ranks pairwise coprime or singleton compositions.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337562 counts pairwise coprime or singleton strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],Length[#]==1||CoprimeQ@@#&]],{n,10},{k,n}] (* Gus Wiseman, Nov 12 2020 *)

Formula

It seems that no general formula or recurrence is known, although Shonhiwa gives formulas for a few of the early diagonals.
Previous Showing 11-20 of 22 results. Next