cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A153229 a(0) = 0, a(1) = 1, and for n >= 2, a(n) = (n-1) * a(n-2) + (n-2) * a(n-1).

Original entry on oeis.org

0, 1, 0, 2, 4, 20, 100, 620, 4420, 35900, 326980, 3301820, 36614980, 442386620, 5784634180, 81393657020, 1226280710980, 19696509177020, 335990918918980, 6066382786809020, 115578717622022980, 2317323290554617020, 48773618881154822980, 1075227108896452857020
Offset: 0

Views

Author

Shaojun Ying (dolphinysj(AT)gmail.com), Dec 21 2008

Keywords

Comments

Previous name was: Weighted Fibonacci numbers.
From Peter Bala, Aug 18 2013: (Start)
The sequence occurs in the evaluation of the integral I(n) := Integral_{u >= 0} exp(-u)*u^n/(1 + u) du.
The result is I(n) = A153229(n) + (-1)^n*I(0), where I(0) = Integral_{u >= 0} exp(-u)/(1 + u) du = 0.5963473623... is known as Gompertz's constant. See A073003.
Note also that I(n) = n!*Integral_{u >= 0} exp(-u)/(1 + u)^(n+1) du. (End)
((-1)^(n+1))*a(n) = p(n,-1), where the polynomials p are defined at A248664. - Clark Kimberling, Oct 11 2014

Examples

			a(20) = 19 * a(18) + 18 * a(19) = 19 * 335990918918980 + 18 * 6066382786809020 = 6383827459460620 + 109194890162562360 = 115578717622022980
		

Crossrefs

First differences of A136580.
Column k=0 of A303697 (for n>0).

Programs

  • C
    unsigned long a(unsigned int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return (n - 1) * a(n - 2) + (n - 2) * a(n - 1); }
    
  • Maple
    t1 := sum(n!*x^n, n=0..100): F := series(t1/(1+x), x, 100): for i from 0 to 40 do printf(`%d, `, i!-coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<2, n, (n-1)*a(n-2) +(n-2)*a(n-1)) end:
    seq(a(n), n=0..25); # Alois P. Heinz, May 24 2013
  • Mathematica
    Join[{a = 0}, Table[b = n! - a; a = b, {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==(n-1)a[n-2]+(n-2)a[n-1]},a,{n,30}] (* Harvey P. Dale, May 01 2020 *)
  • PARI
    a(n)=if(n,my(t=(-1)^n);-t-sum(i=1,n-1,t*=-i),0); \\ Charles R Greathouse IV, Jun 28 2011

Formula

a(0) = 0, a(1) = 1, and for n >= 2, a(n) = (n-1) * a(n-2) + (n-2) * a(n-1).
For n>=1, a(n) = A058006(n-1) * (-1)^(n-1).
G.f.: G(0)*x/(1+x)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: 2*x/(1+x)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: W(0)*x/(1+sqrt(x))/(1+x), where W(k) = 1 + sqrt(x)/( 1 - sqrt(x)*(k+1)/(sqrt(x)*(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 17 2013
a(n) ~ (n-1)! * (1 - 1/n + 1/n^3 + 1/n^4 - 2/n^5 - 9/n^6 - 9/n^7 + 50/n^8 + 267/n^9 + 413/n^10), where numerators are Rao Uppuluri-Carpenter numbers, see A000587. - Vaclav Kotesovec, Mar 16 2015
E.g.f.: exp(1)/exp(x)*(Ei(1, 1-x)-Ei(1, 1)). - Alois P. Heinz, Jul 05 2018
a(n) = Sum_{k = 0..n-1} (-1)^(n-k-1) * k!. - Peter Bala, Dec 05 2024

Extensions

Edited by Max Alekseyev, Jul 05 2010
Better name by Joerg Arndt, Aug 17 2013

A201203 Alternating row sums of triangle A201201: first associated monic Laguerre-Sonin(e) polynomials with parameter alpha=1 evaluated at x=-1.

Original entry on oeis.org

1, -5, 29, -201, 1631, -15173, 159093, -1854893, 23788271, -332613321, 5033396573, -81929955953, 1426898945343, -26468817431501, 520884561854501, -10836674357638293, 237603001692915983, -5475288709200573713, 132276033079845108621
Offset: 0

Views

Author

Wolfdieter Lang, Dec 06 2011

Keywords

Crossrefs

Cf. A201201, A201202 (row sums), A073003, A002793.

Programs

  • Maple
    A201203 := proc(n)
        add((-1)^k*A201201(n,k),k=0..n) ;
    end proc:
    seq(A201203(n),n=0..20) ; # R. J. Mathar, Dec 07 2011
  • Mathematica
    Flatten[{1,RecurrenceTable[{n*(1+n)*a[-2+n]+(3+2*n)*a[-1+n] +a[n]==0, a[1]==-5,a[2]==29}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 19 2013 *)

Formula

a(n) = Sum_{k=0..n} ((-1)^k)*A201201(n,k), n>=0.
a(n)+(2*n+3)*a(n-1)+n*(n+1)*a(n-2)=0, a(-1)=0, a(0)=1. - R. J. Mathar, Dec 07 2011
From Wolfdieter Lang, Dec 11 2011: (Start)
E.g.f. from A201201 with x=-1, z->x: g(x) = exp(1/(1+x))*(3+2*x)*(exp(-1) + (Ei(1,1/(1+x))-Ei(1,1)))/(1+x)^4-(2+x)/(1+x)^3, with the exponential integral Ei.
This e.g.f. satisfies the homogeneous ordinary second-order differential equation (1+x)^2*(d^2(g(x))/dx^2) + (7+6*x)*(d(g(x))/dx)+6*g(x), with g(0)=1 and (d(g(x))/dx){x=0} = -5. This is equivalent to the recurrence conjectured above by _R. J. Mathar, which is thus proved.
(End)
Let G denote Gompertz's constant A073003. The unsigned sequence is the sequence of numerators in the convergents coming from the infinite continued fraction expansion 1 - G = 1/(3 - 2/(5 - 6/(7 - ... - n*(n+1)/((2*n+3) - ...)))). The sequence of convergents begins [1/3, 5/13, 29/73, 201/501, ...]. The denominators are in A000262. - Peter Bala, Aug 19 2013
a(n) ~ (-1)^n * 2^(-1/2)*(exp(-1)-Ei(1,1)) * exp(2*sqrt(n)-n+1/2) * n^(n+7/4) * (1+91/(48*sqrt(n))), where Ei(1,1) = 0.21938393439552... = G / exp(1), where G = 0.596347362323194... is the Gompertz constant (see A073003). - Vaclav Kotesovec, Oct 19 2013

Extensions

R. J. Mathar conjecture corrected and proved by Wolfdieter Lang, Dec 11 2011

A007549 Number of increasing rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

1, 1, 3, 14, 89, 716, 6967, 79524, 1041541, 15393100, 253377811, 4596600004, 91112351537, 1959073928124, 45414287553455, 1129046241331316, 29965290866974493, 845605519848379436, 25282324544244718411, 798348403914242674980, 26549922456617388029641
Offset: 1

Views

Author

Keywords

Comments

In an increasing rooted graph, nodes are numbered and the numbers increase as you move away from the root.
(a(n+1)/a(n))/n tends to 1/A073003 = 1.676875... (same limit as A029768). - Vaclav Kotesovec, Jul 26 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A029768.
Row sums of A078341. Column k=1 of A264436.

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(exptr(a)): a:= n-> `if`(n=0, 1, b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum[ Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = exptr[ exptr[a] ]; a[n_] := If[n == 0, 1, b[n-1]]; Table[ a[n], {n, 1, 19}] (* Jean-François Alcover, May 10 2012, after Alois P. Heinz *)

Formula

Shifts left when exponentiated twice.
Conjecture: a(n) = Sum_{i=0..2^(n-2) - 1} b(i) for n > 1 with a(1) = 1 where b(n) = (L(n) + 2)*b(f(n)) + Sum_{k=0..L(n) - 1} (1 - R(n,k))*b(f(n) + 2^k*(1 - R(n,k))) for n > 0 with b(0) = 1, L(n) = A000523(n), f(n) = A053645(n) and where R(n,k) = floor(n/2^k) mod 2. Here R(n,k) is the (k+1)-th bit from the right side in the binary expansion of n. - Mikhail Kurkov, Jul 21 2024
Conjecture: a(n) = D^(n-1)(exp(x)) evaluated at x = 0, where D denotes the operator exp(x)*(1 + x)*d/dx. - Peter Bala, Feb 24 2025

Extensions

New description from Christian G. Bower, Oct 15 1998

A002793 a(n) = 2n*a(n-1) - (n-1)^2*a(n-2).

Original entry on oeis.org

0, 1, 4, 20, 124, 920, 7940, 78040, 859580, 10477880, 139931620, 2030707640, 31805257340, 534514790680, 9591325648580, 182974870484120, 3697147584561340, 78861451031150840, 1770536585183202980, 41729280102868841080, 1030007496863617367420, 26568602827124392999640
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Dec 12 2011: (Start)
r(n) = a(n+1)*(-1)^n, n >= 0, gives the alternating row sums of the coefficient triangle A199577, i.e., r(n)=La_n(1;0,-1), with the monic first associated Laguerre polynomials with parameter alpha=0 evaluated at x=-1.
The e.g.f. for these row sums r(n) is g(x) = -(2+x)*exp(1/(1+x))*(Ei(1,1/(1+x))-Ei(1,1))/(1+x)^3 + 1/(1+x)^2, with the exponential integral Ei(1,x) = Gamma(0,x).
This e.g.f. satisfies the homogeneous ordinary second-order differential equation (1+x)^2*(d^2/dx^2)g(x) + (6+5*x)*(d/dx)g(x) + 4*g(x) = 0, g(0)=1, (d/dx)g(x)|_{x=0}=-4.
This e.g.f. g(x) is equivalent to the recurrence
b(n)= -2*(n+1)*b(n-1) - n^2*b(n-2), b(-1)=0, b(0)=1.
Therefore, the e.g.f. of a(n) is A(x)=int(g(-x),x), with A(0)=0. This agrees with the e.g.f. given below in the formula section by Max Alekseyev.
(End)

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Bisection of A056952. A199577 (alternating row sums, unsigned).

Programs

  • Magma
    I:=[1, 4]; [0] cat [n le 2 select I[n] else 2*n*Self(n-1) - (n-1)^2*Self(n-2): n in [1..30]]; // G. C. Greubel, May 16 2018
  • Mathematica
    Flatten[{0,RecurrenceTable[{(-1+n)^2 a[-2+n]-2 n a[-1+n]+a[n]==0,a[1]==1,a[2]==4}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 19 2013 *)
    nxt[{n_,a_,b_}]:={n+1,b,2(n+1)b-n^2 a}; NestList[nxt,{1,0,1},30][[All,2]] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    A058006(n) = sum(k=0,n, (-1)^k*k! );
    a(n) = if (n<=1, n, sum(k=1, n, (k+1) * A058006(k-1) * binomial(n,k) * (n-1)! / (k-1)! ) ); /* Joerg Arndt, Oct 12 2012 */
    
  • PARI
    {a(n)=if(n==1,1,polcoeff(1-sum(m=1, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} \\ Paul D. Hanna, Feb 06 2013
    

Formula

From Max Alekseyev, Jul 06 2010: (Start)
For n > 1, a(n) = Sum_{k=1..n} (k+1) * A058006(k-1) * binomial(n,k) * (n-1)! / (k-1)!.
E.g.f.: (Gamma(0,1) - Gamma(0,1/(1-x))) * exp(1/(1-x)) / (1-x). (End)
From Peter Bala, Oct 11 2012: (Start)
Numerators in the sequence of convergents of Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := int {x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The denominators are in A002720.
(End)
G.f.: x = Sum_{n>=1} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Feb 06 2013
a(n) ~ G * exp(2*sqrt(n) - n - 1/2) * n^(n+1/4) / sqrt(2) * (1 + 31/(48*sqrt(n))), where G = 0.596347362323194... is the Gompertz constant (see A073003). - Vaclav Kotesovec, Oct 19 2013

Extensions

Edited by Max Alekseyev, Jul 13 2010

A239069 Decimal expansion of gamma - Ei(-1).

Original entry on oeis.org

7, 9, 6, 5, 9, 9, 5, 9, 9, 2, 9, 7, 0, 5, 3, 1, 3, 4, 2, 8, 3, 6, 7, 5, 8, 6, 5, 5, 4, 2, 5, 2, 4, 0, 8, 0, 0, 7, 3, 2, 0, 6, 6, 2, 9, 3, 4, 6, 8, 3, 1, 8, 0, 6, 3, 8, 3, 7, 4, 5, 8, 4, 7, 9, 5, 8, 4, 3, 6, 4, 2, 5, 3, 3, 6, 8, 0, 6, 2, 1, 5, 6, 5, 9, 1, 5, 7, 3, 1, 4, 3, 2, 6, 8, 8, 3, 9, 9, 9, 4
Offset: 0

Views

Author

Jonathan Sondow, Mar 12 2014

Keywords

Comments

See crossrefs sequences for other comments, references, links, and formulas.

Examples

			0.7965995992970531342836758655425240800732066293468...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 37, table 37:7:1 at page 355.

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma - ExpIntegralEi[-1], 10, 100][[1]]
  • PARI
    Euler + eint1(1,1)[1] \\ Michel Marcus, Aug 01 2020

Formula

Equals (the Euler-Mascheroni constant) - (the exponential integral at -1) = A001620 + A099285.
Equals (the Euler-Mascheroni constant) + (Gompertz's constant / e) = A001620 + (A073003 / A001113).
Equals Sum_{n>=1} (-1)^(n-1) / A001563(n) = Sum_{n>=1} (-1)^(n-1) / (n*n!).
Equals -Integral_{x=0..1} log(x)/exp(x) dx. - Amiram Eldar, Aug 01 2020
Equals (1/e) * Sum_{k>=1} H(k)/k!, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jun 25 2021

A347952 Decimal expansion of exp(1) * (gamma - Ei(-1)).

Original entry on oeis.org

2, 1, 6, 5, 3, 8, 2, 2, 1, 5, 3, 2, 6, 9, 3, 6, 3, 5, 9, 4, 2, 0, 9, 8, 6, 3, 4, 8, 4, 9, 2, 4, 3, 0, 5, 6, 8, 3, 8, 1, 4, 2, 0, 7, 6, 7, 7, 4, 1, 4, 4, 3, 6, 9, 0, 2, 3, 0, 1, 3, 9, 1, 7, 1, 8, 9, 4, 9, 4, 2, 4, 2, 5, 7, 9, 7, 7, 9, 8, 7, 1, 7, 9, 7, 6, 9, 2, 6, 0, 3, 5, 1, 4, 1, 5, 5, 6, 7, 5, 7, 2, 6, 7, 6, 4, 7, 5, 3, 4, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2021

Keywords

Examples

			2.16538221532693635942098634849243056838142076774144369...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[1] (EulerGamma - ExpIntegralEi[-1]), 10, 110] [[1]]
  • PARI
    exp(1)*(Euler + eint1(1)) \\ Michel Marcus, Oct 24 2021

Formula

Equals Sum_{k>=1} H(k) / k!, where H(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} exp(x)*log(1-x) dx. - Amiram Eldar, Oct 23 2021

A283743 Decimal expansion of Ei(1)/e, where Ei is the exponential integral function.

Original entry on oeis.org

6, 9, 7, 1, 7, 4, 8, 8, 3, 2, 3, 5, 0, 6, 6, 0, 6, 8, 7, 6, 5, 4, 7, 8, 6, 8, 1, 9, 1, 9, 5, 5, 1, 5, 9, 5, 3, 1, 7, 1, 7, 5, 4, 3, 0, 9, 5, 4, 3, 6, 9, 5, 1, 7, 3, 2, 0, 0, 5, 4, 8, 0, 7, 7, 8, 9, 4, 5, 4, 1, 1, 5, 1, 9, 5, 1, 4, 4, 2, 6, 9, 6, 2, 9, 1, 0, 0, 5, 3, 0, 3, 0, 3, 3, 3, 9, 1, 1, 4, 0, 0, 6
Offset: 0

Views

Author

Jean-François Alcover, Mar 15 2017

Keywords

Comments

Can be considered the value of the divergent series -0! - 1! - 2! - ... ; see Lagarias reference Section 2.5. - Harry Richman, Jun 14 2020.

Examples

			0.6971748832350660687654786819195515953171754309543695173200548...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, equation 44:5:10 at page 426.

Crossrefs

Cf. A000166 (subfactorials), A061382 (Pi/e, the imaginary part of subfactorial(-1)), A091725 (Ei(1)), A073003 (-exp(1)*Ei(-1)).

Programs

  • Mathematica
    RealDigits[ExpIntegralEi[1]/E, 10, 102][[1]]
  • PARI
    real(-eint1(-1)/exp(1)) \\ Michel Marcus, Jun 15 2020

Formula

Equals Re(subfactorial(-1)) = Re(Gamma(0,-1)/e).
Equals Sum_{k=1..oo} (-1)^k*psi(k)/Gamma(k), where psi denotes the digamma function (see Spanier and Oldham). - Stefano Spezia, Jan 04 2025

A245780 Decimal expansion of (1-C_2)/e, a constant connected with two-sided generalized Fibonacci sequences, where C_2 is the Euler-Gompertz constant.

Original entry on oeis.org

1, 4, 8, 4, 9, 5, 5, 0, 6, 7, 7, 5, 9, 2, 2, 0, 4, 7, 9, 1, 8, 3, 5, 9, 9, 9, 4, 7, 0, 1, 3, 3, 9, 2, 1, 8, 4, 1, 4, 7, 6, 3, 8, 3, 7, 6, 2, 4, 8, 5, 9, 6, 2, 6, 9, 2, 9, 8, 5, 8, 1, 8, 8, 6, 2, 3, 8, 9, 2, 7, 9, 7, 1, 8, 5, 7, 5, 8, 2, 5, 8, 6, 3, 4, 9, 3, 7, 0, 2, 3, 3, 1, 0, 7, 8, 2, 3, 9, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Aug 01 2014

Keywords

Examples

			0.148495506775922047918359994701339218414763837624859626929858...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.2 Euler-Gompertz Constant, p. 426.

Crossrefs

Cf. A073003 (C_2), A099285 (C_2 / e).

Programs

  • Mathematica
    $RecursionLimit = 10^4; digits = 101; m0 = 100; dm = 100; Clear[g]; g[m_] := g[m] = (Clear[a, b, f]; b[n_] := 2*n; a[n_ /; n >= m] = 0; a[1] = 1; a[2] = -1; a[n_] := -(n-1)^2; f[m] = b[m]; f[n_] := f[n] = b[n] + a[n+1]/f[n+1]; (1 - f[0])/E); g[m0]; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits] != RealDigits[g[m - dm], 10, digits], m = m + dm]; RealDigits[g[m], 10, digits] // First
    (* or, as verification: *) RealDigits[1/E + ExpIntegralEi[-1], 10, digits] // First
  • PARI
    1/exp(1) - eint1(1,1)[1] \\ Michel Marcus, Aug 06 2020

Formula

Equals 1/e + Ei(-1), where Ei is the exponential integral function.
Equals Integral_{x=0..1} exp(-1/x) dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=1..+oo} exp(-x)/x^2 dx. - Jianing Song, Oct 03 2021
Equals lim_{n->oo} (Sum_{k=1..n-1} (k/(k+1))^n)/n (Janous, 1990). - Amiram Eldar, Apr 03 2022

A249385 Decimal expansion of gamma - 2*Ei(-1), one of the Tauberian constants, where Ei is the exponential integral function.

Original entry on oeis.org

1, 0, 1, 5, 9, 8, 3, 5, 3, 3, 6, 9, 2, 5, 7, 3, 4, 0, 7, 9, 6, 0, 8, 3, 9, 6, 4, 1, 0, 0, 2, 6, 4, 5, 7, 2, 9, 1, 0, 4, 2, 5, 3, 9, 2, 2, 7, 5, 3, 7, 4, 0, 0, 1, 3, 9, 6, 1, 7, 2, 4, 4, 6, 1, 0, 3, 2, 0, 0, 5, 1, 2, 3, 8, 9, 5, 9, 4, 7, 7, 6, 0, 3, 8, 1, 3, 6, 7, 5, 6, 5, 3, 6, 2, 0, 2, 1, 2, 4, 9, 4, 2, 4
Offset: 1

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Examples

			1.01598353369257340796083964100264572910425392275374...
		

Crossrefs

Programs

  • Maple
    evalf(gamma - 2*Ei(-1), 120); # Vaclav Kotesovec, Oct 27 2014
  • Mathematica
    RealDigits[ EulerGamma - 2*ExpIntegralEi[-1], 10, 103] // First
  • PARI
    default(realprecision, 100); Euler + 2*eint1(1) \\ G. C. Greubel, Sep 04 2018

Formula

Also equals gamma + 2*G/e, where G is the Euler-Gompertz constant 0.596347...
Equals A001620 + 2*A073003/e. - G. C. Greubel, Sep 04 2018

A321942 A sequence related to the Euler-Gompertz constant.

Original entry on oeis.org

1, 2, 8, 44, 300, 2420, 22460, 235260, 2741660, 35152820, 491459820, 7436765660, 121046445260, 2108118579060, 39104985755420, 769549656815420, 16009942093608060, 351030466622487860, 8089084984387984460, 195421894806240545820, 4938445392988428283820
Offset: 1

Views

Author

Richard P. Brent, Dec 12 2018

Keywords

Comments

a(n) satisfies the recurrence a(n) = (2n-1)*a(n-1) - (n-1)*(n-2)*a(n-2) for n > 2, with initial conditions a(1)=1, a(2)=2.
The same recurrence is satisfied by A000262(n), but with different initial conditions.
The limit of a(n)/A000262(n) as n tends to infinity is the Euler-Gompertz constant G = e*E1(1), where E1 is an exponential integral. The decimal representation of G is given by A073003.
The convergents of the c.f. G = 1-1/(3-1*2/(5-2*3/(7-3*4/(9-...)))) are (a(n)/A000262(n)) = (1, 2/3, 8/13, 44/73, ...). The c.f. is equivalent to Bala's c.f. for 1-G given in the entry for A073003.
a(n)/A000262(n) - G ~ 2*Pi*exp(1-4*sqrt(n)) as n tends to infinity.
a(n)/n! ~ G*exp(2*sqrt(n))/(2*n^(3/4)*sqrt(Pi*e)) as n tends to infinity.
a(n) = A000262(n) - |A201203(n-2)| for n >= 2.

Examples

			a(3) = (2*3-1)*a(2) - 2*1*a(1) = 5*2 - 2*1 = 8.
a(3) = A000262(3) - |A201203(1)| = 13 - |5| = 8.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n,
          (2*n-1)*a(n-1) -(n-1)*(n-2)*a(n-2))
        end:
    seq(a(n), n=1..23);  # Alois P. Heinz, Dec 12 2018
  • Mathematica
    a[n_] := a[n] = (2n-1)a[n-1] - (n-1)(n-2)a[n-2]; a[1] = 1; a[2] = 2;
    Array[a, 21] (* Jean-François Alcover, Oct 06 2019 *)

Formula

a(n) = (2n-1)*a(n-1) - (n-1)*(n-2)*a(n-2) for n > 2.
E.g.f.: exp(x/(1-x))*(G - E1(x/(1-x))), where G is the Euler-Gompertz constant and E1 is an exponential integral.
Conjecture: Integral_{x = 0..oo} (x/(1 + x))^n*exp(-x) dx = 1/(n-1)!*( a(n) - A000262(n)*G ), where G = Integral_{x = 0..oo} exp(-x)/(1 + x) dx is the Euler-Gompertz constant A073003. - Peter Bala, Mar 20 2022
Previous Showing 11-20 of 22 results. Next