cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A073003 Decimal expansion of -exp(1)*Ei(-1), also called Gompertz's constant, or the Euler-Gompertz constant.

Original entry on oeis.org

5, 9, 6, 3, 4, 7, 3, 6, 2, 3, 2, 3, 1, 9, 4, 0, 7, 4, 3, 4, 1, 0, 7, 8, 4, 9, 9, 3, 6, 9, 2, 7, 9, 3, 7, 6, 0, 7, 4, 1, 7, 7, 8, 6, 0, 1, 5, 2, 5, 4, 8, 7, 8, 1, 5, 7, 3, 4, 8, 4, 9, 1, 0, 4, 8, 2, 3, 2, 7, 2, 1, 9, 1, 1, 4, 8, 7, 4, 4, 1, 7, 4, 7, 0, 4, 3, 0, 4, 9, 7, 0, 9, 3, 6, 1, 2, 7, 6, 0, 3, 4, 4, 2, 3, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

0! - 1! + 2! - 3! + 4! - 5! + ... = (Borel) Sum_{n>=0} (-y)^n n! = KummerU(1,1,1/y)/y.
Decimal expansion of phi(1) where phi(x) = Integral_{t>=0} e^-t/(x+t) dt. - Benoit Cloitre, Apr 11 2003
The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m => -1, is intimately related to Gompertz's constant. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A000110 the Bell numbers and A040027 a sequence that was published by Gould, see for more information A163940. - Johannes W. Meijer, Oct 16 2009
Named by Le Lionnais (1983) after the English self-educated mathematician and actuary Benjamin Gompertz (1779 - 1865). It was named the Euler-Gompertz constant by Finch (2003). Lagarias (2013) noted that he has not located this constant in Gompertz's writings. - Amiram Eldar, Aug 15 2020

Examples

			0.59634736232319407434107849936927937607417786015254878157348491...
With n := 10^5, Sum_{k >= 0} (n/(n + 1))^k/(n + k) = 0.5963(51...). - _Peter Bala_, Jun 19 2024
		

References

  • Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 171
  • Bruce C. Berndt, Ramanujan's notebooks Part I, Springer, p. 144-145.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 303, 424-425.
  • Francois Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983. See p. 29.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, page 426.
  • H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948, p. 356.

Crossrefs

Cf. A000522 (arrangements), A001620, A000262, A002720, A002793, A058006 (alternating factorial sums), A091725, A099285, A153229, A201203, A245780, A283743 (Ei(1)/e), A321942, A369883.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ExponentialIntegralE1(1)*Exp(1); // G. C. Greubel, Dec 04 2018
    
  • Mathematica
    RealDigits[N[-Exp[1]*ExpIntegralEi[-1], 105]][[1]]
    (* Second program: *)
    G = 1/Fold[Function[2*#2 - #2^2/#1], 2, Reverse[Range[10^4]]] // N[#, 105]&; RealDigits[G] // First (* Jean-François Alcover, Sep 19 2014 *)
  • PARI
    eint1(1)*exp(1) \\ Charles R Greathouse IV, Apr 23 2013
    
  • Sage
    numerical_approx(exp_integral_e(1,1)*exp(1), digits=100) # G. C. Greubel, Dec 04 2018

Formula

phi(1) = e*(Sum_{k>=1} (-1)^(k-1)/(k*k!) - Gamma) = 0.596347362323194... where Gamma is the Euler constant.
G = 0.596347... = 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3/(1+4/(1+4/(1+5/(1+5/(1+6/(... - Philippe Deléham, Aug 14 2005
Equals A001113*A099285. - Johannes W. Meijer, Oct 16 2009
From Peter Bala, Oct 11 2012: (Start)
Stieltjes found the continued fraction representation G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793 and the denominators in A002720.
Also, 1 - G has the continued fraction representation 1/(3 - 2/(5 - 6/(7 - ... -n*(n+1)/((2*n+3) - ...)))) with convergents beginning [1/3, 5/13, 29/73, 201/501, ...]. The numerators are in A201203 (unsigned) and the denominators are in A000262.
(End)
G = f(1) with f solution to the o.d.e. x^2*f'(x) + (x+1)*f(x)=1 such that f(0)=1. - Jean-François Alcover, May 28 2013
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..1} 1/(1-log(x)) dx.
Equals Integral_{x=1..oo} exp(1-x)/x dx.
Equals Integral_{x=0..oo} exp(-x)*log(x+1) dx.
Equals Integral_{x=0..oo} exp(-x)/(x+1) dx. (End)
From Gleb Koloskov, May 01 2021: (Start)
Equals Integral_{x=0..1} LambertW(e/x)-1 dx.
Equals Integral_{x=0..1} 1+1/LambertW(-1,-x/e) dx. (End)
Equals lim_{n->oo} A040027(n)/A000110(n+1). - Vaclav Kotesovec, Feb 22 2021
G = lim_{n->oo} A321942(n)/A000262(n). - Peter Bala, Mar 21 2022
Equals Sum_{n >= 1} 1/(n*L(n, -1)*L(n-1, -1)), where L(n, x) denotes the n-th Laguerre polynomial. This is the case x = 1 of the identity Integral_{t >= 0} exp(-t)/(x + t) dt = Sum_{n >= 1} 1/(n*L(n, -x)*L(n-1, -x)) valid for Re(x) > 0. - Peter Bala, Mar 21 2024
Equals lim_{n->oo} Sum_{k >= 0} (n/(n + 1))^k/(n + k). Cf. A099285. - Peter Bala, Jun 18 2024

Extensions

Additional references from Gerald McGarvey, Oct 10 2005
Link corrected by Johannes W. Meijer, Aug 01 2009

A201203 Alternating row sums of triangle A201201: first associated monic Laguerre-Sonin(e) polynomials with parameter alpha=1 evaluated at x=-1.

Original entry on oeis.org

1, -5, 29, -201, 1631, -15173, 159093, -1854893, 23788271, -332613321, 5033396573, -81929955953, 1426898945343, -26468817431501, 520884561854501, -10836674357638293, 237603001692915983, -5475288709200573713, 132276033079845108621
Offset: 0

Views

Author

Wolfdieter Lang, Dec 06 2011

Keywords

Crossrefs

Cf. A201201, A201202 (row sums), A073003, A002793.

Programs

  • Maple
    A201203 := proc(n)
        add((-1)^k*A201201(n,k),k=0..n) ;
    end proc:
    seq(A201203(n),n=0..20) ; # R. J. Mathar, Dec 07 2011
  • Mathematica
    Flatten[{1,RecurrenceTable[{n*(1+n)*a[-2+n]+(3+2*n)*a[-1+n] +a[n]==0, a[1]==-5,a[2]==29}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 19 2013 *)

Formula

a(n) = Sum_{k=0..n} ((-1)^k)*A201201(n,k), n>=0.
a(n)+(2*n+3)*a(n-1)+n*(n+1)*a(n-2)=0, a(-1)=0, a(0)=1. - R. J. Mathar, Dec 07 2011
From Wolfdieter Lang, Dec 11 2011: (Start)
E.g.f. from A201201 with x=-1, z->x: g(x) = exp(1/(1+x))*(3+2*x)*(exp(-1) + (Ei(1,1/(1+x))-Ei(1,1)))/(1+x)^4-(2+x)/(1+x)^3, with the exponential integral Ei.
This e.g.f. satisfies the homogeneous ordinary second-order differential equation (1+x)^2*(d^2(g(x))/dx^2) + (7+6*x)*(d(g(x))/dx)+6*g(x), with g(0)=1 and (d(g(x))/dx){x=0} = -5. This is equivalent to the recurrence conjectured above by _R. J. Mathar, which is thus proved.
(End)
Let G denote Gompertz's constant A073003. The unsigned sequence is the sequence of numerators in the convergents coming from the infinite continued fraction expansion 1 - G = 1/(3 - 2/(5 - 6/(7 - ... - n*(n+1)/((2*n+3) - ...)))). The sequence of convergents begins [1/3, 5/13, 29/73, 201/501, ...]. The denominators are in A000262. - Peter Bala, Aug 19 2013
a(n) ~ (-1)^n * 2^(-1/2)*(exp(-1)-Ei(1,1)) * exp(2*sqrt(n)-n+1/2) * n^(n+7/4) * (1+91/(48*sqrt(n))), where Ei(1,1) = 0.21938393439552... = G / exp(1), where G = 0.596347362323194... is the Gompertz constant (see A073003). - Vaclav Kotesovec, Oct 19 2013

Extensions

R. J. Mathar conjecture corrected and proved by Wolfdieter Lang, Dec 11 2011

A199577 Coefficient triangle of the associated Laguerre polynomials of order 1.

Original entry on oeis.org

1, -3, 1, 11, -8, 1, -50, 58, -15, 1, 274, -444, 177, -24, 1, -1764, 3708, -2016, 416, -35, 1, 13068, -33984, 23544, -6560, 835, -48, 1, -109584, 341136, -288360, 101560, -17370, 1506, -63, 1, 1026576, -3733920, 3736440, -1595040, 343410, -39900, 2513, -80, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 25 2011

Keywords

Comments

Associated monic polynomials of order m (a nonnegative integer) in one variable, p_n(m;x), have the coefficients of the three-term recurrence of the original orthogonal monic polynomials p_n(x)=p_n(0;x) shifted by +m, and use the same inputs for n=-1 and n=0, namely 0 and 1, respectively. See, e.g., the Ismail reference, p. 27, Definition (2.3.4), where the notation is P_n(x;c) = p_n(c;x).
p_n(x)=p_n(0;x) and p_{n-1}(1;x) provide the fundamental system for the three-term recurrence of p_n(x) with general input.
p_{n-1}(1;x)/p_n(0;x) is the n-th approximation to the Jacobi continued fraction related to the three-term recurrence.
The monic row polynomials are La_n(1;x) = Sum_{k=0..n} a(n,k)*x^k, with the monic Laguerre polynomials La_n(x), which have the three-term recurrence
La_n(x) = (x - (2*n - 1))*La_{n-1}(x) - (n - 1)^2*La_{n-2}(x), La_{-1}(x) = 0, La_0(x) = 1.
In the Ismail reference the non-monic associated Laguerre polynomials of order 1 appear on p. 160 in Theorem 5.6.1, eq. 5.6.11. The connection is: La_n(1;x)= L_n^{(alpha=0)}(x;1)*(n+1)!*(-1)^n.
From Wolfdieter Lang, Dec 04 2011: (Start)
The e.g.f. gLa(z,x) for La_n(1;x) can be obtained from the o.g.f. G(z,x) for the non-monic version L_n^{(alpha=0)}(x;1) by gLa(z,x)=(d/dz)(z*G(-z,x)).
G(z,x) satisfies the ordinary first-order inhomogeneous differential equation, derived from the recurrence:
(d/dz)G(z,x) = (2/(1-z)+(1-x)/(1-z)^2-1/(z*(1-z)^2))* G(z,x) + 1/(z*(1-z)^2), with G(0,x)=1. The standard solution is:
G(z,x) = exp(-x/(1-z))*(Ei(1,-x) - Ei(1,-x/(1-z)))/(z*(1-z)), with the exponential integral Ei(1,y) = Integral_{t = y..oo} exp(-t)/t. From this the e.g.f. gLa(z,x), given in the Formula section, results. (End)
Note that these are not the associated Laguerre polynomials as usually defined in the literature. - Peter Bala, Mar 22 2024

Examples

			n\k      0        1       2        3      4    5  6   7
0:       1
1:      -3        1
2:      11       -8       1
3:     -50       58     -15        1
4:     274     -444     177      -24      1
5:   -1764     3708   -2016      416    -35    1
6:   13068   -33984   23544    -6560    835  -48   1
7: -109584   341136 -288360   101560 -17370 1506 -63  1
...
		

References

  • M. E. H. Ismail (two chapters by W. Van Assche), Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.

Crossrefs

Cf. A021009 (Laguerre), A199578 (row sums), A002793(n+1)*(-1)^n (alternating row sums, conjecture). [This conjecture has been proved by Wolfdieter Lang, Dec 12 2011]

Programs

  • Mathematica
    Ei[1, y_] := -ExpIntegralEi[-y];
    (cc = CoefficientList[#, x]; cc (Length[cc]-1)!)& /@ CoefficientList[(1 - Exp[-x/(1+z)] (1 - x/(1+z)) (Ei[1, -x/(1+z)] - Ei[1, -x]))/(1+z)^2 + O[z]^9, z] // Flatten (* Jean-François Alcover, Oct 28 2019 *)
  • PARI
    p(n) = numerator(bestapprPade(Ser(vector(2*n, k, (k-1)!))));
    concat(vector(9, n, Vec((-1)^(n-1)*p(n))))  \\ Gheorghe Coserea, Dec 01 2016

Formula

T(n,k) = [x^k] La_n(1; x), n >= 0, k = 0,...,n, with the three-term recurrence of the row polynomials: La_n(1; x) = (x - (2*n + 1))*La_{n-1}(1; x) - (n^2)* La_{n-2}(1; x), with La_{-1}(1; x) = 0, La_0(1; x) = 1.
The e.g.f. for La_n(1; x) is (1 - exp(-x/(1+z))*(1-x/(1+z))*(Ei(1,-x/(1+z)) - Ei(1,-x)))/(1+z)^2, with the exponential integral Ei. See the comments section for the definition and the proof. - Wolfdieter Lang, Dec 04 2011
n-th row polynomial = (-1)^n*(n+1)!*L(n+1, x)*Sum_{k = 0..n+1} 1/(k*L(k, x)*L(k-1, x)), where L(k, x) denotes the k-th Laguerre polynomial. See A021009. - Peter Bala, Mar 22 2024

A056952 Numerators of continued fraction for alternating factorial.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 20, 44, 124, 300, 920, 2420, 7940, 22460, 78040, 235260, 859580, 2741660, 10477880, 35152820, 139931620, 491459820, 2030707640, 7436765660, 31805257340, 121046445260, 534514790680, 2108118579060, 9591325648580
Offset: 0

Views

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Cf. A002793, A056922 (denominators).

Formula

a(0)=0; a(1)=1; a(n) = a(n-1) + (n/2)*a(n-2).
a(2n) = A002793(n); a(2n-1) = A002793(n) - n * A002793(n-1). - Max Alekseyev, Jul 07 2010

Extensions

More terms from James Sellers, Sep 07 2000

A199578 Row sums of coefficient triangle of the monic associated Laguerre polynomials of order 1.

Original entry on oeis.org

1, -2, 4, -6, -16, 310, -3144, 28826, -260000, 2345094, -20901880, 176084986, -1216168944, 1862029910, 186232275544, -6005924996070, 144514137334976, -3177768345524954, 67577079942366120, -1420754665075404166, 29799354626069718640
Offset: 0

Views

Author

Wolfdieter Lang, Nov 25 2011

Keywords

Crossrefs

Cf. A199577 (monic first associated Laguerre), A002793(n+1)*(-1)^n, n>=0 (alternating row sums).

Programs

  • Magma
    I:=[-2,4]; [1] cat [n le 2 select I[n] else -2*n*Self(n-1) - n^2*Self(n-2): n in [1..30]]; // G. C. Greubel, May 14 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == -2*n*a[n-1] -n^2*a[n-2], a[0] == 1, a[1] == -2}, a, {n, 0, 40}] (* G. C. Greubel, May 14 2018 *)
  • PARI
    m=30; v=concat([-2,4], vector(m-2)); for(n=3, m, v[n]=-2*n*v[n-1]-n^2*v[n-2]); concat([1], v) \\ G. C. Greubel, May 14 2018

Formula

a(n) = Sum_{k=0..n} A199577(n,k), n>=0.
From Wolfdieter Lang, Dec 12 2011 (Start)
E.g.f. from A199577 with x=1, z->x:
g(x) = -x*exp(-1/(1+x))*(Ei(1,-1/(1+x))-Ei(1,-1))/(1+x)^3 + 1/(1+x)^2, with the exponential integral Ei. In order to obtain the series use first Ei(1,-y/(1+x))-Ei(1,-y), and put y=1 after the expansion.
This e.g.f. satisfies the homogeneous ordinary second order differential equation (1+x)^2*(d^2/dx^2)g(x)+(4+5*x)*(d/dx)g(x)+4*g(x) = 0, with g(0)=1 and (d/dx)g(x)|_{x=0}=-2.
This e.g.f. is equivalent to the recurrence relation:
a(n) = -2*n*a(n-1) - n^2*a(n-2), a(-1)=0, a(0)=1.
(End)
The conjecture on the alternating row sums has been proved by Wolfdieter Lang, Dec 12 2011
Showing 1-6 of 6 results.