cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A174548 Decimal expansion of e - 1/e.

Original entry on oeis.org

2, 3, 5, 0, 4, 0, 2, 3, 8, 7, 2, 8, 7, 6, 0, 2, 9, 1, 3, 7, 6, 4, 7, 6, 3, 7, 0, 1, 1, 9, 1, 2, 0, 1, 6, 3, 0, 3, 1, 1, 4, 3, 5, 9, 6, 2, 6, 6, 8, 1, 9, 1, 7, 4, 0, 4, 5, 9, 1, 3, 0, 8, 2, 6, 0, 2, 6, 6, 1, 5, 1, 3, 4, 6, 0, 8, 6, 4, 7, 7, 9, 1, 2, 1, 4, 2, 3, 4, 9, 0, 4, 1, 7, 9, 2, 4, 6, 7, 8, 3, 6, 8, 0, 8, 3
Offset: 1

Views

Author

Paul Curtz, Mar 22 2010

Keywords

Examples

			2.3504023872876029137647637...
		

Crossrefs

Cf. A001113 (e), A068985 (1/e), and A137204 (e + 1/e), A073742 (sinh(1)).

Programs

  • Maple
    evalf(exp(1)-exp(-1)) ; # R. J. Mathar, Oct 14 2011
  • Mathematica
    RealDigits[E - 1/E, 10, 111][[1]]
  • PARI
    exp(1) - exp(-1) \\ Michel Marcus, May 05 2019

Formula

Equals 2 * sinh(1) = 2 * A073742. - Amiram Eldar, Nov 25 2020

Extensions

Edited and extended by Robert G. Wilson v, Apr 25 2010

A068139 Continued fraction expansion for sinh(1).

Original entry on oeis.org

1, 5, 1, 2, 2, 2, 1, 2, 7, 5, 1, 1, 1, 2, 2, 19, 1, 2, 1, 7, 1, 1, 9, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 4, 5, 3, 5, 1, 3, 1, 1, 1, 2, 7, 1, 9, 1, 1, 2, 1, 21, 1, 18, 1, 2, 734, 1, 2, 1, 84, 2, 2, 1, 1, 2, 10, 1, 3, 7, 1, 16, 1, 2, 4, 56, 1, 13, 16, 208
Offset: 0

Views

Author

Benoit Cloitre, Mar 13 2002

Keywords

Comments

If an extra zero is added to the beginning of this sequence, continued fraction for csch(1) = 1/sinh(1). - Rick L. Shepherd, Aug 07 2002

Crossrefs

Cf. A068118, A073742 (decimal expansion), A073745 (decimal expansion of csch(1)).
Cf. A078980, A078981 (convergents).

Programs

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A098557 Expansion of e.g.f. (1/2)*(1+x)*log((1+x)/(1-x)).

Original entry on oeis.org

0, 1, 2, 2, 8, 24, 144, 720, 5760, 40320, 403200, 3628800, 43545600, 479001600, 6706022400, 87178291200, 1394852659200, 20922789888000, 376610217984000, 6402373705728000, 128047474114560000, 2432902008176640000, 53523844179886080000, 1124000727777607680000
Offset: 0

Views

Author

Paul Barry, Sep 14 2004

Keywords

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Cf. A109613 (odd numbers repeated).
Equals the first left hand column of A167552.
Equals the first right hand column of A167556.
A098557(n)*A064455(n) equals the second right hand column of A167556(n).
(End)

Programs

  • Magma
    [0,1] cat [Factorial(n-1) + Factorial(n-2)*(1+(-1)^n)/2: n in [2..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    Join[{0,1}, Table[(n-1)! + (n-2)!*(1+(-1)^n)/2, {n,2,30}]] (* or *) With[{nmax = 50}, CoefficientList[Series[(1/2)*(1 + x)*Log[(1 + x)/(1 - x)], {x,0,nmax}], x]*Range[0,nmax]!] (* G. C. Greubel, Jan 17 2018 *)
  • PARI
    for(n=0, 30, print1(if(n==0,0, if(n==1, 1, (n-1)! + (n-2)!*(1 + (-1)^n)/2)), ", ")) \\ G. C. Greubel, Jan 17 2018
    

Formula

a(n+1) = n! + (n-1)! * (1-(-1)^n)/2.
a(n+2) = 2*A052558(n).
conjecture: -a(n) +a(n-1) +(n-1)*(n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
G.f.: 1-G(0), where G(k)= 1 + x*(2*k-1)/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
Sum_{n>=1} 1/a(n) = sinh(1) + 1 = A073742 + 1. - Amiram Eldar, Jan 22 2023

A052618 Expansion of e.g.f. 1/((1-x)^2*(1-x^2)).

Original entry on oeis.org

1, 2, 8, 36, 216, 1440, 11520, 100800, 1008000, 10886400, 130636800, 1676505600, 23471078400, 348713164800, 5579410636800, 94152554496000, 1694745980928000, 32011868528640000, 640237370572800000, 13380961044971520000, 294381142989373440000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Permanent of the n X n (0, 1)-matrix with (i, j)-th entry equal to 0 iff (i=1, j=n), (i=2, j=1), (i=3, j=n), (i=4, j=1), ... - Simone Severini, Oct 17 2004
a(n) is the number of runs of odd entries in all permutations of {1,2,...,n+1}. Example: a(2)=8 because in the permutations 123, 132, 213, 231, 312 and 321 we have a total of 2+1+1+1+1+2 runs of odd entries. - Emeric Deutsch, Dec 14 2008
a(n) is the number of permutations of [n+2] whose first place is even and last place is odd (or any equivalent definition with two separate places in a permutation). - Olivier Gérard, Nov 07 2011

Examples

			The a(2) = 8 permutations of [4] starting with an even number and ending with an odd number are: 2143, 2341, 2413, 2431, 4123, 4213, 4231, 4321.
		

Crossrefs

Programs

  • Maple
    spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    a := proc (n) options operator, arrow: factorial(n)*floor((1/2)*n+1)*ceil((1/2)*n+1) end proc; seq(a(n), n = 0 .. 20); # Emeric Deutsch, Dec 14 2008
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/((1-x)^2*(1-x^2)),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 01 2019 *)

Formula

E.g.f.: -1/(-1+x)^2/(-1+x^2).
Recurrence: {a(0)=1, a(1)=2, (-n^2-5*n-4)*a(n)+a(n+2)-2*a(n+1)=0.}.
a(n) = (1/8*(-1)^(-n)+1/4*n^2+n+7/8)*n! for n>0.
From Emeric Deutsch, Dec 14 2008: (Start)
a(n) = n!*floor((n+2)/2)*ceiling((n+2)/2).
a(n) = Sum_{k>=1} (k*A152666(n+1,k)). (End)
a(n) = n!*A002620(n+2). - R. J. Mathar, Nov 27 2011
Sum_{n>=0} 1/a(n) = 4*(sinh(1) + gamma - CoshIntegral(1)) - 2 = 4*(A073742 + A001620 - A099284) - 2. - Amiram Eldar, Jan 22 2023

A077611 Number of adjacent pairs of form (odd,odd) among all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 0, 4, 12, 144, 720, 8640, 60480, 806400, 7257600, 108864000, 1197504000, 20118067200, 261534873600, 4881984307200, 73229764608000, 1506440871936000, 25609494822912000, 576213633515520000, 10948059036794880000, 267619220899430400000, 5620003638888038400000
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of permutations of [n+1] starting and ending with an even number. - Olivier Gérard, Nov 07 2011

Examples

			For n=4, the a(4) = 12 permutations of degree 5 starting and ending with an even number are 21354, 21534, 23154, 23514, 25134, 25314, 41352, 41532, 43152, 43512, 45132, 45312.
		

Crossrefs

Programs

  • Magma
    [Factorial(n-1)*(2*n*(n-1)-(2*n-1)*(-1)^n-1)/8 : n in [1..30]]; // Vincenzo Librandi, Nov 16 2011
  • Mathematica
    Table[Ceiling[n/2] Ceiling[n/2 - 1] (n - 1)!, {n, 22}] (* Michael De Vlieger, Aug 20 2017 *)

Formula

a(n) = ceiling(n/2)*ceiling(n/2-1)*(n-1)!. Proof: There are ceiling(n/2) * ceiling(n/2-1) pairs (r, s) with r and s odd and distinct. For each pair, there are n-1 places it can occur in a permutation and (n-2)! possible arrangements of the other numbers.
a(n) = (n-1)!*(2*n*(n-1)-(2*n-1)*(-1)^n-1)/8. - Bruno Berselli, Nov 07 2011
Sum_{n>=3} 1/a(n) = 4*(CoshIntegral(1) - gamma - sinh(1) + 1) = 4*(A099284 - A001620 - A073742 + 1). - Amiram Eldar, Jan 22 2023

A109234 a(n) = floor(n*sinh(1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2005

Keywords

Comments

Beatty sequence for sinh(1) = (e-1/e)/2 = 1.17520... = A073742; complement of A109235.

Crossrefs

A354211 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.

Original entry on oeis.org

1, 7, 47, 5923, 426457, 15636757, 7318002277, 1536780478171, 603180793741, 142957467201379447, 60042136224579367741, 10127106976545720025649, 18228792557782296046168201, 12796612375563171824410077103, 3463616416319098507140327535879, 1380498543075754976417359117871773
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354211(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)).

A354331 a(n) is the denominator of Sum_{k=0..n} 1 / (2*k+1)!.

Original entry on oeis.org

1, 6, 40, 5040, 362880, 13305600, 6227020800, 1307674368000, 513257472000, 121645100408832000, 51090942171709440000, 8617338912961658880000, 15511210043330985984000000, 10888869450418352160768000000, 2947253997913233984847872000000, 1174691236311131831103651840000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354331(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022

Formula

Denominators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)).

A334363 Decimal expansion of Sum_{k>=0} 1/(4*k+1)!.

Original entry on oeis.org

1, 0, 0, 8, 3, 3, 6, 0, 8, 9, 2, 2, 5, 8, 4, 8, 9, 8, 1, 7, 6, 7, 4, 4, 2, 0, 8, 6, 1, 1, 2, 9, 4, 9, 9, 0, 7, 3, 8, 9, 1, 4, 0, 5, 2, 1, 0, 6, 6, 2, 3, 3, 4, 6, 7, 9, 5, 1, 1, 5, 8, 5, 6, 1, 5, 0, 2, 6, 0, 8, 9, 8, 5, 8, 4, 7, 7, 8, 1, 7, 8, 2, 2, 7, 7, 8, 7, 8, 5, 9, 7, 8, 1, 6, 3, 3, 8, 0, 4, 3, 8, 4, 7, 3, 8, 4, 2, 8, 5, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Examples

			1/1! + 1/5! + 1/9! + ... = 1.008336089225848981767442...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sin[1] + Sinh[1])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(4*k+1)!) \\ Michel Marcus, Apr 25 2020

Formula

Equals (sin(1) + sinh(1))/2.

A334365 Decimal expansion of Sum_{k>=0} 1/(4*k+3)!.

Original entry on oeis.org

1, 6, 6, 8, 6, 5, 1, 0, 4, 4, 1, 7, 9, 5, 2, 4, 7, 5, 1, 1, 4, 9, 3, 9, 7, 6, 4, 4, 8, 2, 6, 5, 0, 9, 0, 7, 7, 6, 6, 5, 7, 7, 4, 6, 0, 2, 6, 7, 8, 6, 2, 4, 0, 2, 2, 7, 8, 4, 0, 6, 8, 5, 1, 5, 1, 0, 6, 9, 8, 5, 8, 1, 4, 5, 6, 5, 4, 2, 1, 1, 3, 3, 2, 9, 2, 3, 8, 8, 5, 4, 2, 7, 3, 2, 8, 5, 3, 4, 7, 9, 9, 3, 0, 3, 5, 2, 4, 7, 7, 0, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2020

Keywords

Examples

			1/3! + 1/7! + 1/11! + ... = 0.1668651044179524751...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sinh[1] - Sin[1])/2, 10, 111] [[1]]
  • PARI
    suminf(k=0, 1/(4*k+3)!) \\ Michel Marcus, Apr 25 2020

Formula

Equals (sinh(1) - sin(1))/2.
Previous Showing 11-20 of 41 results. Next