cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A220909 The second crank moment function M_2(n).

Original entry on oeis.org

0, 2, 8, 18, 40, 70, 132, 210, 352, 540, 840, 1232, 1848, 2626, 3780, 5280, 7392, 10098, 13860, 18620, 25080, 33264, 44088, 57730, 75600, 97900, 126672, 162540, 208208, 264770, 336240, 424204, 534336, 669438, 837080, 1041810, 1294344, 1601138, 1977140, 2432430, 2987040, 3655806
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Comments

M_2(n) is defined to be Sum_{m=-n..n} m^2 M(m,n) where M(m,n) is the number of partitions of n with crank m except for n=1 where M(-1,1) = M(1,1) = -M(0,1) = 1. - Michael Somos, Nov 10 2013
From Omar E. Pol, Jul 25 2022: (Start)
Apart from the initial zero this is also:
Convolution of A074400 and A000041.
Convolution of A000203 and A139582. (End)

Examples

			G.f. = 2*x + 8*x^2 + 18*x^3 + 40*x^4 + 70*x^5 + 132*x^6 + 210*x^7 + ...
For n=1, M_2(1) = Sum_{m=-1..1} m^2 * M(m,2) = (-1)^2*1 + 0^2*(-1) + 1^2*1 = 2. For n=2, the partition [2] has crank 2 and partition [1,1] has crank -2, hence M_2(2) = 2^2 + (-2)^2 = 8. - _Michael Somos_, Nov 10 2013
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2 n PartitionsP @ n (* Michael Somos, Nov 10 2013 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * n * polcoeff( 1 / eta(x + x * O(x^n)), n))} /* Michael Somos, Nov 10 2013 */

Formula

a(n) = 2*n*A000041(n) = 2*A066186(n).
a(n) = n*A139582(n). - Omar E. Pol, Jan 03 2013
a(n) = A220908(n) + A211982(n), n >= 1. - Omar E. Pol, Jan 17 2013
a(n) = 2*(A092269(n) + A220907(n)), n >= 1. _Omar E. Pol, Feb 18 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(2*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016

A274536 a(n) = 6 * sigma(n).

Original entry on oeis.org

6, 18, 24, 42, 36, 72, 48, 90, 78, 108, 72, 168, 84, 144, 144, 186, 108, 234, 120, 252, 192, 216, 144, 360, 186, 252, 240, 336, 180, 432, 192, 378, 288, 324, 288, 546, 228, 360, 336, 540, 252, 576, 264, 504, 468, 432, 288, 744, 342, 558, 432, 588, 324, 720, 432, 720, 480, 540, 360, 1008, 372, 576, 624, 762
Offset: 1

Views

Author

Omar E. Pol, Jun 29 2016

Keywords

Comments

6 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every 60-degree-three-dimensional sector arises after the 60-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a six-pointed star formed by six rhombuses (see Links section).

Crossrefs

k times sigma(n), k=1..8: A000203, A074400, A272027, A239050, A274535, this sequence, A319527, A319528.

Programs

  • Maple
    with(numtheory): seq(6*sigma(n), n=1..64);
  • Mathematica
    6DivisorSigma[1, Range[50]] (* Alonso del Arte, Jul 04 2016 *)
  • PARI
    a(n) = 6 * sigma(n);

Formula

a(n) = 6*A000203(n) = 3*A074400(n) = 2*A272027(n).
a(n) = A000203(n) + A274535(n) = A074400(n) + A239050(n).
Dirichlet g.f.: 6*zeta(s-1)*zeta(s). - Ilya Gutkovskiy, Jul 04 2016
Conjecture: a(n) = sigma(5*n) = A283118(n) iff n is not a multiple of 5. - Omar E. Pol, Oct 02 2018

A319527 a(n) = 7 * sigma(n).

Original entry on oeis.org

7, 21, 28, 49, 42, 84, 56, 105, 91, 126, 84, 196, 98, 168, 168, 217, 126, 273, 140, 294, 224, 252, 168, 420, 217, 294, 280, 392, 210, 504, 224, 441, 336, 378, 336, 637, 266, 420, 392, 630, 294, 672, 308, 588, 546, 504, 336, 868, 399, 651, 504, 686, 378, 840, 504, 840, 560, 630, 420, 1176, 434, 672, 728, 889
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Comments

7 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every (360/7)-degree-three-dimensional sector arises after the (360/7)-degree-zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a seven-pointed star formed by seven rhombuses (see Links section).

Crossrefs

k times sigma(n), k=1..8: A000203, A074400, A272027, A239050, A274535, A274536, this sequence, A319528.

Programs

  • GAP
    List([1..70],n->7*Sigma(n)); # Muniru A Asiru, Sep 28 2018
  • Maple
    with(numtheory): seq(7*sigma(n), n=1..64);
  • Mathematica
    7*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Mar 14 2020 *)
  • PARI
    a(n) = 7 * sigma(n);
    

Formula

a(n) = 7*A000203(n).
a(n) = A000203(n) + A274536(n).
Dirichlet g.f.: 7*zeta(s-1)*zeta(s). - (After Ilya Gutkovskiy)

A319528 a(n) = 8 * sigma(n).

Original entry on oeis.org

8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Comments

8 times the sum of the divisors of n.
a(n) is also the total number of horizontal rhombuses in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) in which the structure of every 45-degree three-dimensional sector arises after the 45-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is an eight-pointed star formed by eight rhombuses (see Links section).

Crossrefs

Programs

  • GAP
    List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
  • Maple
    with(numtheory): seq(8*sigma(n), n=1..64);
  • Mathematica
    8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
  • PARI
    a(n) = 8 * sigma(n);
    

Formula

a(n) = 8*A000203(n) = 4*A074400(n) = 2*A239050(n).
a(n) = A000203(n) + A319527(n).
Dirichlet g.f.: 8*zeta(s-1)*zeta(s). (After Ilya Gutkovskiy)
Conjecture: a(n) = sigma(7*n) = A283078(n) iff n is not a multiple of 7.
Conjecture is true, since sigma is multiplicative, so if (7,n) = 1 then sigma(7*n) = sigma(7)*sigma(n) = 8*sigma(n). - Charlie Neder, Oct 02 2018

A239052 Sum of divisors of 4*n-2.

Original entry on oeis.org

3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A062731 (odd part).
a(n) is also the total number of cells in the n-th branch of the second quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-2). For the quadrants 1, 3, 4 see A112610, A239053, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270, see example.
We can find the spiral on the terraces of the stepped pyramid described in A244050. - Omar E. Pol, Dec 07 2016

Examples

			Illustration of initial terms:
------------------------------------------------------
.        Branches of the spiral
.        in the second quadrant             n    a(n)
------------------------------------------------------
.
.                  _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|         4     24
.                 | |
.             12 _| |
.               |_ _|  _ _ _ _ _ _
.         12 _ _|     |  _ _ _ _ _|         3     18
.      _ _ _| |    9 _| |
.     |  _ _ _|  9 _|_ _|
.     | |      _ _| |      _ _ _ _
.     | |     |  _ _| 12 _|  _ _ _|         2     12
.     | |     | |      _|   |
.     | |     | |     |  _ _|
.     | |     | |     | |    3 _ _
.     | |     | |     | |     |  _|         1      3
.     |_|     |_|     |_|     |_|
.
For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 4*n - 2]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)

Formula

a(n) = A000203(4n-2) = A000203(A016825(n-1)).
a(n) = 3*A008438(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (3*Pi^2/8) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A239053 Sum of divisors of 4*n-1.

Original entry on oeis.org

4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2014

Keywords

Comments

Bisection of A008438.
a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270.
We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - Omar E. Pol, Dec 06 2016

Examples

			Illustration of initial terms:
-----------------------------------------------------
.        Branches of the spiral
.        in the third quadrant             n    a(n)
-----------------------------------------------------
.     _       _       _       _
.    | |     | |     | |     | |
.    | |     | |     | |     |_|_ _
.    | |     | |     | |    2  |_ _|       1      4
.    | |     | |     |_|_     2
.    | |     | |    4    |_
.    | |     |_|_ _        |_ _ _ _
.    | |    6      |_      |_ _ _ _|       2      8
.    |_|_ _ _        |_   4
.   8      | |_ _      |
.          |_    |     |_ _ _ _ _ _
.            |_  |_    |_ _ _ _ _ _|       3     12
.           8  |_ _|  6
.                  |
.                  |_ _ _ _ _ _ _ _
.                  |_ _ _ _ _ _ _ _|       4     24
.                 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
		

Crossrefs

Programs

Formula

a(n) = A000203(4n-1) = A000203(A004767(n-1)).
a(n) = 4*A097723(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022

A327329 Twice the sum of all divisors of all positive integers <= n.

Original entry on oeis.org

2, 8, 16, 30, 42, 66, 82, 112, 138, 174, 198, 254, 282, 330, 378, 440, 476, 554, 594, 678, 742, 814, 862, 982, 1044, 1128, 1208, 1320, 1380, 1524, 1588, 1714, 1810, 1918, 2014, 2196, 2272, 2392, 2504, 2684, 2768, 2960, 3048, 3216, 3372, 3516, 3612, 3860, 3974, 4160, 4304, 4500, 4608, 4848, 4992
Offset: 1

Views

Author

Omar E. Pol, Sep 25 2019

Keywords

Comments

a(n) has a symmetric representation. Using two opposite quadrants, where in each quadrant there is the Dyck path related to partitions described in the n-th row of triangle A237593, a(n) is the total area (or the total number of cells) of the structure (see the example).
a(n) is also the total area of the horizontal faces in the stepped pyramid with n levels described in A245092 (that is the total area of the terraces plus the area of the base). - Omar E. Pol, Dec 15 2021

Examples

			Illustration of a(8) = 112 using a symmetric structure constructed with the Dyck path related to partitions described in the 8th row of triangle A237593.
                           _ _ _ _ _
                          |         |
                          |         |_
                          |           |_ _
                          |               |
                          |     56        |
                          |               |
                          |               |
           _ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _|
          |               |
          |               |
          |               |
          |       56      |
          |_ _            |
              |_          |
                |         |
                |_ _ _ _ _|
		

Crossrefs

Programs

  • Mathematica
    Accumulate[2*DivisorSigma[1,Range[60]]] (* Harvey P. Dale, Sep 25 2021 *)
  • PARI
    a(n) = 2*sum(k=1, n, sigma(k)); \\ Michel Marcus, Dec 20 2021
    
  • Python
    from sympy import divisor_sigma
    from itertools import accumulate
    def f(, n): return  + 2*divisor_sigma(n, 1)
    def aupton(terms): return list(accumulate(range(terms+1), f))[1:]
    print(aupton(55)) # Michael S. Branicky, Dec 16 2021
    
  • Python
    from math import isqrt
    def A327329(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = 2*A024916(n).
a(n) = A243980(n)/2.
a(n) = A006218(n) + A222548(n).
a(n) = A001105(n) - A067436(n).
lim_{n->infinity} a(n)/(n^2) = Pi^2/6 = zeta(2) (cf. A013661). - Omar E. Pol, Dec 16 2021

A002659 a(n) = 2*sigma(n) - 1.

Original entry on oeis.org

1, 5, 7, 13, 11, 23, 15, 29, 25, 35, 23, 55, 27, 47, 47, 61, 35, 77, 39, 83, 63, 71, 47, 119, 61, 83, 79, 111, 59, 143, 63, 125, 95, 107, 95, 181, 75, 119, 111, 179, 83, 191, 87, 167, 155, 143, 95, 247, 113, 185, 143, 195, 107, 239, 143, 239, 159, 179, 119, 335, 123, 191
Offset: 1

Views

Author

Keywords

References

  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242639.

Programs

  • Mathematica
    2DivisorSigma[1,Range[70]]-1 (* Harvey P. Dale, Apr 14 2014 *)
  • PARI
    a(n)=if(n<1,0,2*sigma(n)-1)

Formula

G.f. for Moebius transf.: (x + 2x^2 - x^3 ) / (1 - x )^2.
a(n) = A074400(n) - 1. - Filip Zaludek, Oct 30 2016

Extensions

Better definition from Ralf Stephan, Nov 18 2004

A340426 Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n.

Original entry on oeis.org

1, 3, 0, 4, 0, 1, 7, 0, 3, 1, 6, 0, 4, 3, 2, 12, 0, 7, 4, 6, 2, 8, 0, 6, 7, 8, 6, 4, 15, 0, 12, 6, 14, 8, 12, 4, 13, 0, 8, 12, 12, 14, 16, 12, 7, 18, 0, 15, 8, 24, 12, 28, 16, 21, 8, 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12, 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14, 14, 0, 12
Offset: 1

Views

Author

Omar E. Pol, Jan 07 2021

Keywords

Comments

Conjecture: the sum of row n equals A138879(n), the sum of all parts in the last section of the set of partitions of n.

Examples

			Triangle begins:
   1;
   3,  0;
   4,  0,  1;
   7,  0,  3,  1;
   6,  0,  4,  3,  2;
  12,  0,  7,  4,  6,  2;
   8,  0,  6,  7,  8,  6,  4;
  15,  0, 12,  6, 14,  8, 12,  4;
  13,  0,  8, 12, 12, 14, 16, 12,  7;
  18,  0, 15,  8, 24, 12, 28, 16, 21,  8;
  12,  0, 13, 15, 16, 24, 14, 28, 28, 24, 12;
  28,  0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k   A002865         T(6,k)
--------------------------
1      1   *   12  =  12
2      0   *   6   =   0
3      1   *   7   =   7
4      1   *   4   =   4
5      2   *   3   =   6
6      2   *   1   =   2
.           A000203
--------------------------
The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31.
		

Crossrefs

Columns 1, 3 and 4 give A000203.
Column 2 gives A000004.
Columns 5 and 6 gives A074400.
Column 7 and 8 give A239050.
Column 9 gives A319527.
Column 10 gives A319528.
Leading diagonal gives A002865.

A215947 Difference between the sum of the even divisors and the sum of the odd divisors of 2n.

Original entry on oeis.org

1, 5, 4, 13, 6, 20, 8, 29, 13, 30, 12, 52, 14, 40, 24, 61, 18, 65, 20, 78, 32, 60, 24, 116, 31, 70, 40, 104, 30, 120, 32, 125, 48, 90, 48, 169, 38, 100, 56, 174, 42, 160, 44, 156, 78, 120, 48, 244, 57, 155, 72, 182, 54, 200, 72, 232, 80, 150, 60, 312, 62, 160
Offset: 1

Views

Author

Michel Lagneau, Aug 28 2012

Keywords

Comments

Multiplicative because a(n) = -A002129(2*n), A002129 is multiplicative and a(1) = -A002129(2) = 1. - Andrew Howroyd, Jul 31 2018

Examples

			a(6) = 20 because the divisors of 2*6 = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
		

Crossrefs

Cf. A000593, A002129, A022998 (Moebius transform), A074400, A195382, A195690.

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=divisors(2*n):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1  then printf(`%d, `,s0-s1):else fi:od:
  • Mathematica
    a[n_] := DivisorSum[2n, (1 - 2 Mod[#, 2]) #&];
    Array[a, 62] (* Jean-François Alcover, Sep 13 2018 *)
    edod[n_]:=Module[{d=Divisors[2n]},Total[Select[d,EvenQ]]-Total[ Select[ d,OddQ]]]; Array[edod,70] (* Harvey P. Dale, Jul 30 2021 *)
  • PARI
    a(n) = 4*sigma(n) - sigma(2*n); \\ Andrew Howroyd, Jul 28 2018

Formula

From Andrew Howroyd, Jul 28 2018: (Start)
a(n) = 4*sigma(n) - sigma(2*n).
a(n) = -A002129(2*n). (End)
G.f.: Sum_{k>=1} x^k*(1 + 4*x^k + x^(2*k))/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Sep 14 2019
a(p) = p + 1 for p prime >= 3. - Bernard Schott, Sep 14 2019
a(n) = A239050(n) - A062731(n) - Omar E. Pol, Mar 06 2021 (after Andrew Howroyd)
From Amiram Eldar, Nov 18 2022: (Start)
Multiplicative with a(2^e) = 2^(e+2) - 3, and a(p^e) = sigma(p^e) = (p^(e+1) - 1)/(p-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1+2^(1-s)). - Amiram Eldar, Jan 05 2023
From Peter Bala, Sep 25 2023: (Start)
a(2*n) = sigma(2*n) + 2*sigma(n); a(2*n+1) = sigma(2*n+1) = A008438(n)
G.f.: A(q) = Sum_{n >= 1} n*q^n*(1 + 3*q^n)/(1 - q^(2*n)).
Logarithmic g.f.: Sum_{n >= 1} a(n)*q^n/n = Sum_{n >= 1} log(1/(1 - q^n)) + Sum_{n >= 1} log(1/(1 - q^(2*n))) = log (G(q)), where G(q) is the g.f. of A002513. (End)
Previous Showing 11-20 of 46 results. Next