A220909
The second crank moment function M_2(n).
Original entry on oeis.org
0, 2, 8, 18, 40, 70, 132, 210, 352, 540, 840, 1232, 1848, 2626, 3780, 5280, 7392, 10098, 13860, 18620, 25080, 33264, 44088, 57730, 75600, 97900, 126672, 162540, 208208, 264770, 336240, 424204, 534336, 669438, 837080, 1041810, 1294344, 1601138, 1977140, 2432430, 2987040, 3655806
Offset: 0
G.f. = 2*x + 8*x^2 + 18*x^3 + 40*x^4 + 70*x^5 + 132*x^6 + 210*x^7 + ...
For n=1, M_2(1) = Sum_{m=-1..1} m^2 * M(m,2) = (-1)^2*1 + 0^2*(-1) + 1^2*1 = 2. For n=2, the partition [2] has crank 2 and partition [1,1] has crank -2, hence M_2(2) = 2^2 + (-2)^2 = 8. - _Michael Somos_, Nov 10 2013
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265.
- Wikipedia, Crank of a partition
-
a[ n_] := 2 n PartitionsP @ n (* Michael Somos, Nov 10 2013 *)
-
{a(n) = if( n<0, 0, 2 * n * polcoeff( 1 / eta(x + x * O(x^n)), n))} /* Michael Somos, Nov 10 2013 */
A274536
a(n) = 6 * sigma(n).
Original entry on oeis.org
6, 18, 24, 42, 36, 72, 48, 90, 78, 108, 72, 168, 84, 144, 144, 186, 108, 234, 120, 252, 192, 216, 144, 360, 186, 252, 240, 336, 180, 432, 192, 378, 288, 324, 288, 546, 228, 360, 336, 540, 252, 576, 264, 504, 468, 432, 288, 744, 342, 558, 432, 588, 324, 720, 432, 720, 480, 540, 360, 1008, 372, 576, 624, 762
Offset: 1
-
with(numtheory): seq(6*sigma(n), n=1..64);
-
6DivisorSigma[1, Range[50]] (* Alonso del Arte, Jul 04 2016 *)
-
a(n) = 6 * sigma(n);
A319527
a(n) = 7 * sigma(n).
Original entry on oeis.org
7, 21, 28, 49, 42, 84, 56, 105, 91, 126, 84, 196, 98, 168, 168, 217, 126, 273, 140, 294, 224, 252, 168, 420, 217, 294, 280, 392, 210, 504, 224, 441, 336, 378, 336, 637, 266, 420, 392, 630, 294, 672, 308, 588, 546, 504, 336, 868, 399, 651, 504, 686, 378, 840, 504, 840, 560, 630, 420, 1176, 434, 672, 728, 889
Offset: 1
-
List([1..70],n->7*Sigma(n)); # Muniru A Asiru, Sep 28 2018
-
with(numtheory): seq(7*sigma(n), n=1..64);
-
7*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Mar 14 2020 *)
-
a(n) = 7 * sigma(n);
A319528
a(n) = 8 * sigma(n).
Original entry on oeis.org
8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1
-
List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
-
with(numtheory): seq(8*sigma(n), n=1..64);
-
8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
-
a(n) = 8 * sigma(n);
A239052
Sum of divisors of 4*n-2.
Original entry on oeis.org
3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1
Illustration of initial terms:
------------------------------------------------------
. Branches of the spiral
. in the second quadrant n a(n)
------------------------------------------------------
.
. _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _| 4 24
. | |
. 12 _| |
. |_ _| _ _ _ _ _ _
. 12 _ _| | _ _ _ _ _| 3 18
. _ _ _| | 9 _| |
. | _ _ _| 9 _|_ _|
. | | _ _| | _ _ _ _
. | | | _ _| 12 _| _ _ _| 2 12
. | | | | _| |
. | | | | | _ _|
. | | | | | | 3 _ _
. | | | | | | | _| 1 3
. |_| |_| |_| |_|
.
For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
Cf.
A000203,
A008438,
A016825,
A062731,
A074400,
A112610,
A193553,
A196020,
A236104,
A235791,
A237270,
A237271,
A237591,
A237593,
A239050,
A239053,
A244050,
A245092,
A262626.
A239053
Sum of divisors of 4*n-1.
Original entry on oeis.org
4, 8, 12, 24, 20, 24, 40, 32, 48, 56, 44, 48, 72, 72, 60, 104, 68, 72, 124, 80, 84, 120, 112, 120, 156, 104, 108, 152, 144, 144, 168, 128, 132, 240, 140, 168, 228, 152, 192, 216, 164, 168, 260, 248, 180, 248, 216, 192, 336, 200, 240, 312, 212, 264, 296
Offset: 1
Illustration of initial terms:
-----------------------------------------------------
. Branches of the spiral
. in the third quadrant n a(n)
-----------------------------------------------------
. _ _ _ _
. | | | | | | | |
. | | | | | | |_|_ _
. | | | | | | 2 |_ _| 1 4
. | | | | |_|_ 2
. | | | | 4 |_
. | | |_|_ _ |_ _ _ _
. | | 6 |_ |_ _ _ _| 2 8
. |_|_ _ _ |_ 4
. 8 | |_ _ |
. |_ | |_ _ _ _ _ _
. |_ |_ |_ _ _ _ _ _| 3 12
. 8 |_ _| 6
. |
. |_ _ _ _ _ _ _ _
. |_ _ _ _ _ _ _ _| 4 24
. 8
.
For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
Cf.
A000203,
A004767,
A008438,
A062731,
A074400,
A112610,
A193553,
A196020,
A235791,
A236104,
A237270,
A237591,
A237593,
A239050,
A239052,
A244050,
A245092,
A262626.
-
[SumOfDivisors(4*n-1): n in [1..60]]; // Vincenzo Librandi, Dec 07 2016
-
A239053:=n->numtheory[sigma](4*n-1): seq(A239053(n), n=1..80); # Wesley Ivan Hurt, Dec 06 2016
-
DivisorSigma[1,4*Range[60]-1] (* Harvey P. Dale, Dec 06 2016 *)
Table[DivisorSigma[1, 4 n - 1], {n, 100}] (* Vincenzo Librandi, Dec 07 2016 *)
-
a(n) = sigma(4*n-1); \\ Michel Marcus, Dec 07 2016
A327329
Twice the sum of all divisors of all positive integers <= n.
Original entry on oeis.org
2, 8, 16, 30, 42, 66, 82, 112, 138, 174, 198, 254, 282, 330, 378, 440, 476, 554, 594, 678, 742, 814, 862, 982, 1044, 1128, 1208, 1320, 1380, 1524, 1588, 1714, 1810, 1918, 2014, 2196, 2272, 2392, 2504, 2684, 2768, 2960, 3048, 3216, 3372, 3516, 3612, 3860, 3974, 4160, 4304, 4500, 4608, 4848, 4992
Offset: 1
Illustration of a(8) = 112 using a symmetric structure constructed with the Dyck path related to partitions described in the 8th row of triangle A237593.
_ _ _ _ _
| |
| |_
| |_ _
| |
| 56 |
| |
| |
_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _|
| |
| |
| |
| 56 |
|_ _ |
|_ |
| |
|_ _ _ _ _|
Cf.
A001105,
A006218,
A013661,
A024916,
A067436,
A222548,
A236104,
A237591,
A237593,
A243980,
A245092,
A262626.
-
Accumulate[2*DivisorSigma[1,Range[60]]] (* Harvey P. Dale, Sep 25 2021 *)
-
a(n) = 2*sum(k=1, n, sigma(k)); \\ Michel Marcus, Dec 20 2021
-
from sympy import divisor_sigma
from itertools import accumulate
def f(, n): return + 2*divisor_sigma(n, 1)
def aupton(terms): return list(accumulate(range(terms+1), f))[1:]
print(aupton(55)) # Michael S. Branicky, Dec 16 2021
-
from math import isqrt
def A327329(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023
A002659
a(n) = 2*sigma(n) - 1.
Original entry on oeis.org
1, 5, 7, 13, 11, 23, 15, 29, 25, 35, 23, 55, 27, 47, 47, 61, 35, 77, 39, 83, 63, 71, 47, 119, 61, 83, 79, 111, 59, 143, 63, 125, 95, 107, 95, 181, 75, 119, 111, 179, 83, 191, 87, 167, 155, 143, 95, 247, 113, 185, 143, 195, 107, 239, 143, 239, 159, 179, 119, 335, 123, 191
Offset: 1
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
2DivisorSigma[1,Range[70]]-1 (* Harvey P. Dale, Apr 14 2014 *)
-
a(n)=if(n<1,0,2*sigma(n)-1)
A340426
Triangle read by rows: T(n,k) = A000203(n-k+1)*A002865(k-1), 1 <= k <= n.
Original entry on oeis.org
1, 3, 0, 4, 0, 1, 7, 0, 3, 1, 6, 0, 4, 3, 2, 12, 0, 7, 4, 6, 2, 8, 0, 6, 7, 8, 6, 4, 15, 0, 12, 6, 14, 8, 12, 4, 13, 0, 8, 12, 12, 14, 16, 12, 7, 18, 0, 15, 8, 24, 12, 28, 16, 21, 8, 12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12, 28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14, 14, 0, 12
Offset: 1
Triangle begins:
1;
3, 0;
4, 0, 1;
7, 0, 3, 1;
6, 0, 4, 3, 2;
12, 0, 7, 4, 6, 2;
8, 0, 6, 7, 8, 6, 4;
15, 0, 12, 6, 14, 8, 12, 4;
13, 0, 8, 12, 12, 14, 16, 12, 7;
18, 0, 15, 8, 24, 12, 28, 16, 21, 8;
12, 0, 13, 15, 16, 24, 14, 28, 28, 24, 12;
28, 0, 18, 13, 30, 16, 48, 24, 49, 32, 36, 14;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k A002865 T(6,k)
--------------------------
1 1 * 12 = 12
2 0 * 6 = 0
3 1 * 7 = 7
4 1 * 4 = 4
5 2 * 3 = 6
6 2 * 1 = 2
. A000203
--------------------------
The sum of row 6 is 12 + 0 + 7 + 4 + 6 + 2 = 31, equaling A138879(6) = 31.
A215947
Difference between the sum of the even divisors and the sum of the odd divisors of 2n.
Original entry on oeis.org
1, 5, 4, 13, 6, 20, 8, 29, 13, 30, 12, 52, 14, 40, 24, 61, 18, 65, 20, 78, 32, 60, 24, 116, 31, 70, 40, 104, 30, 120, 32, 125, 48, 90, 48, 169, 38, 100, 56, 174, 42, 160, 44, 156, 78, 120, 48, 244, 57, 155, 72, 182, 54, 200, 72, 232, 80, 150, 60, 312, 62, 160
Offset: 1
a(6) = 20 because the divisors of 2*6 = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
-
with(numtheory):for n from 1 to 100 do:x:=divisors(2*n):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1 then printf(`%d, `,s0-s1):else fi:od:
-
a[n_] := DivisorSum[2n, (1 - 2 Mod[#, 2]) #&];
Array[a, 62] (* Jean-François Alcover, Sep 13 2018 *)
edod[n_]:=Module[{d=Divisors[2n]},Total[Select[d,EvenQ]]-Total[ Select[ d,OddQ]]]; Array[edod,70] (* Harvey P. Dale, Jul 30 2021 *)
-
a(n) = 4*sigma(n) - sigma(2*n); \\ Andrew Howroyd, Jul 28 2018
Comments