cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A147748 Row sums of Riordan array ((1-3x+x^2)/(1-4x+3x^2), x(1-2x)/(1-4x+3x^2)).

Original entry on oeis.org

1, 2, 6, 20, 70, 250, 900, 3250, 11750, 42500, 153750, 556250, 2012500, 7281250, 26343750, 95312500, 344843750, 1247656250, 4514062500, 16332031250, 59089843750, 213789062500, 773496093750, 2798535156250, 10125195312500
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Row sums of A147747. Binomial transform of A061646.
Counts all paths of length (2*n), n>=0, starting at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 19 2011: (Start)
For the 5 X 5 unit-primitive matrix (see [Jeffery])
A_(10,1) = [0,1,0,0,0; 1,0,1,0,0; 0,1,0,1,0; 0,0,1,0,1; 0,0,0,2,0],
a(n) = (Trace([A_(10,1)]^(2*n)))/5. (See also A189315.) (End)

Crossrefs

Programs

  • Maple
    with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):= add(B(n)[1,k], k=1..9); od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    (1 - 3x + x^2)/(1 - 5x + 5x^2) + O[x]^25 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 05 2016 *)

Formula

G.f.: (1-3*x+x^2)/(1-5*x+5*x^2).
a(n) = 5*a(n-1) - 5*a(n-2) for n > 2, a(0)=1, a(1)=2, a(2)=6. - Philippe Deléham, Nov 13 2008
For n >= 1: a(n) = (2/5)*((5-sqrt(5))/2)^n + (2/5)*((5+sqrt(5))/2)^n. - Richard Choulet, Nov 14 2008
G.f.: 1/(1-2x/(1-x/(1-x/(1-x)))) (hence sequence approximates A000984 in first few terms). - Paul Barry, Aug 05 2009
a(n) = (1/5)*Sum_{k=1..5} (x_k)^(2*n), x_k=2*cos((2*k-1)*Pi/10). - L. Edson Jeffery, Apr 19 2011
From R. J. Mathar, Apr 20 2011: (Start)
a(n) = A030191(n) - 3*A030191(n-1) + A030191(n-2).
a(n) = 2*A081567(n-1), n > 0. (End)
a(n) = Sum_{k=0..n} A147746(n,k)*2^k. - Philippe Deléham, Oct 30 2011
E.g.f.: (1 + 4*exp(5*x/2)*cosh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 09 2024

A217770 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 1, 5, 10, 10, 4, 0, 0, 6, 15, 20, 14, 0, 0, 0, 6, 21, 35, 34, 14, 0, 0, 0, 0, 27, 56, 69, 48, 0, 0, 0, 0, 0, 27, 83, 125, 117, 48, 0, 0, 0, 0, 0, 0, 110, 208, 242, 165, 0, 0, 0, 0, 0, 0, 0, 110, 318, 450, 407, 165
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
n=0: 1, 1,  1,  1,   1,   1,   0,   0,    0,    0,    0, 0, ...
n=1: 1, 2,  3,  4,   5,   6,   6,   0,    0,    0,    0, 0, ...
n=2: 1, 3,  6, 10,  15,  21,  27,  27,    0,    0,    0, 0, ...
n=3: 1, 4, 10, 20,  35,  56,  83, 110,  110,    0,    0, 0, ...
n=4: 0, 4, 14, 34,  69, 125, 208, 318,  428,  428,    0, 0, ...
n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
...
Square array, read by rows, with 0 omitted:
...1,    1,     1,     1,     1,      1
...1,    2,     3,     4,     5,      6,      6
...1,    3,     6,    10,    15,     21,     27,     27
...1,    4,    10,    20,    35,     56,     83,    110,    110
...4,   14,    34,    69,   125,    208,    318,    428,    428
..14,   48,   117,   242,   450,    768,   1196,   1624,   1624
..48,  165,   407,   857,  1625,   2821,   4445,   6069,   6069
.165,  572,  1429,  3054,  5875,  10320,  16389,  22458,  22458
.572, 2001,  5055, 10930, 21250,  37639,  60097,  82555,  82555
2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
...
Triangle begins:
1
1, 1
1, 2,  1
1, 3,  3,  1
1, 4,  6,  4,  0
1, 5, 10, 10,  4,  0
0, 6, 15, 20, 14,  0, 0
0, 6, 21, 35, 34, 14, 0, 0
...
		

Crossrefs

Formula

T(n,n+4) = T(n,n+5) = A094788(n+2).
T(n,n+3) = A217783(n).
T(n,n+2) = A217779(n).
T(n,n+1) = A081567(n).
T(n,n) = A217782(n).
T(n+1,n) = A217778(n).
T(n+3,n) = T(n+2,n) = A094667(n+1).
Sum(T(n-k,k), k=0..n) = A217777(n).

A270863 Self-composition of the Fibonacci sequence.

Original entry on oeis.org

0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0

Views

Author

Oboifeng Dira, Mar 24 2016

Keywords

Comments

This sequence has the same relation to the Fibonacci numbers A000045 as A030267 has to the natural numbers A000027.
From Oboifeng Dira, Jun 28 2020: (Start)
This sequence can be generated from a family of composition pairs of generating functions g(f(x)), where k is an integer and where
f(x) = x/(1-k*x-x^2) and g(x) = (x+(k-1)*x^2)/(1-(3-2*k)*x-(3*k-k^2-1)*x^2).
Some cases of k values are:
k=-5, f(x) g.f. 0,A052918(-1)^n and g(x) g.f. 0,A081571
k=-4, f(x) g.f. A001076(-1)^(n+1) and g(x) g.f. 0,A081570
k=-3, f(x) g.f. A006190(-1)^(n+1) and g(x) g.f. 0,A081569
k=-2, f(x) g.f. A215936(n+2) and g(x) g.f. 0,A081568
k=-1, f(x) g.f. A039834(n+2) and g(x) g.f. 0,A081567
k=0, f(x) g.f. A000035 and g(x) g.f. 0,A001519(n+1)
k=1, f(x) g.f. A000045 and g(x) g.f. A000045
k=2, f(x) g.f. A000129 and g(x) g.f. 0,A039834(n+1)
k=3, f(x) g.f. A006190 and g(x) g.f. 0,A001519(-1)^n
k=4, f(x) g.f. A001076 and g(x) g.f. 0,A093129(-1)^n
k=5, f(x) g.f. 0,A052918 and g(x) g.f. 0,A192240(-1)^n
k=6, f(x) g.f. A005668 and g(x)=(x+5*x^2)/(1+9*x+19*x^2)
k=7, f(x) g.f. 0,A054413 and g(x)=(x+6*x^2)/(1+11*x+29*x^2).
(End)

Examples

			a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    f:= x-> x/(1-x-x^2):
    a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
    seq(a(n), n=0..30);
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
    
  • PARI
    concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
    

Formula

a(n) = 3*a(n-1)+a(n-2)-3*a(n-3)-a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=2, a(3)=6.
G.f.: x*(1-x-x^2) / (1-3*x-x^2+3*x^3+x^4). - Colin Barker, Mar 24 2016
G.f.: B(B(x)) where B(x) is the g.f. of A000045. - Joerg Arndt, Mar 25 2016
a(n) = (phi*((phi^2 + 5^(1/4)*sqrt(3*phi))^n - (phi^2 - 5^(1/4)*sqrt(3*phi))^n) + (psi^2 + 5^(1/4)*sqrt(3*psi))^n - (psi^2 - 5^(1/4)*sqrt(3*psi))^n)/(2^n * 5^(3/4) * sqrt(3*phi)), where phi = (sqrt(5) + 1)/2 is the golden ratio, and psi = 1/phi = (sqrt(5) - 1)/2. - Vladimir Reshetnikov, Aug 01 2019
0 = a(n)*(a(n) +6*a(n+1) -a(n+2)) +a(n+1)*(8*a(n+1) -9*a(n+2) +a(n+3)) +a(n+2)*(-8*a(n+2) +6*a(n+3)) +a(n+3)*(-a(n+3)) if n>=0. - Michael Somos, Feb 05 2022

A206947 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank above 0.

Original entry on oeis.org

0, 0, 0, 2, 14, 70, 306, 1248, 4888, 18666, 70110, 260414, 959882, 3519232, 12854064, 46824210, 170243566, 618125238, 2242100898, 8126927456, 29442587720, 106626616954, 386046638142, 1397431266222, 5057790129274, 18304064121600, 66237312391776
Offset: 0

Views

Author

David Nacin, Feb 13 2012

Keywords

Comments

Here, the term uniform used in the sense of Retakh, Serconek and Wilson. Graded is used in terms of Stanley's definition that all maximal chains have the same length n.

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Cf. A206948 (removing unique maximal element.)
Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element.)

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{8, -21, 20, -5}, {0, 0, 2, 14}, 40]]
  • Python
    def a(n,adict={0:0,1:0,2:0,3:2,4:14}):
        if n in adict:
            return adict[n]
        adict[n]=8*a(n-1)-21*a(n-2)+20*a(n-3)-5*a(n-4)
        return adict[n]

Formula

a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), a(1)=0, a(2)=0, a(3)=2, a(4)=14.
G.f.: (2*(1-x)*x^3)/((1-3*x+x^2)*(1-5*x+5*x^2)).
a(n) = A081567(n-1) - A001906(n).

A208345 Triangle of coefficients of polynomials v(n,x) jointly generated with A208344; see the Formula section.

Original entry on oeis.org

1, 0, 3, 0, 1, 7, 0, 1, 3, 17, 0, 1, 3, 10, 41, 0, 1, 3, 11, 30, 99, 0, 1, 3, 12, 35, 87, 239, 0, 1, 3, 13, 40, 108, 245, 577, 0, 1, 3, 14, 45, 130, 322, 676, 1393, 0, 1, 3, 15, 50, 153, 406, 938, 1836, 3363, 0, 1, 3, 16, 55, 177, 497, 1236, 2682, 4925, 8119, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

Row sums, u(n,1): (1,2,5,13,...), odd-indexed Fibonacci numbers.
Row sums, v(n,1): (1,3,8,21,...), even-indexed Fibonacci numbers.
As triangle T(n,k) with 0<=k<=n, it is (0, 1/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -2/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012

Examples

			First five rows:
  1
  0   3
  0   1   7
  0   1   3   17
  0   1   3   10   41
First five polynomials u(n,x):
  1, 3*x, x + 7*x^2, x + 3*x^2 + 17*x^3, x + 3*x^2 + 10*x^3 + 41*x^4.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208344 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208345 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]
    Table[v[n, x] /. x -> 1, {n, 1, z}]

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k), 0<=k<=n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-2) - 2*T(n-2,k-1) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1+(y-1)*x)/(1-(1+2*y)*x+y*(2-y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A152167(n), A000007(n), A001906(n+1), A003948(n) for x = -1, 0, 1, 2 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A078057(n), A001906(n+1), A000244(n), A081567(n), A083878(n), A165310(n) for x = 0, 1, 2, 3, 4, 5 respectively. (End)

A328646 Irregular triangular array read by rows: row n shows the coefficients of this polynomial of degree n: (1/n!)*(numerator of n-th derivative of (1-x)/(x^2-3x+1)).

Original entry on oeis.org

1, -1, 2, -2, 1, 5, -6, 3, -1, 13, -20, 12, -4, 1, 34, -65, 50, -20, 5, -1, 89, -204, 195, -100, 30, -6, 1, 233, -623, 714, -455, 175, -42, 7, -1, 610, -1864, 2492, -1904, 910, -280, 56, -8, 1, 1597, -5490, 8388, -7476, 4284, -1638, 420, -72, 9, -1, 4181
Offset: 0

Views

Author

Clark Kimberling, Nov 01 2019

Keywords

Comments

The first 501 polynomials are irreducible. Column 1 of the array: A001519 (odd-indexed Fibonacci numbers). Row sums: A000045 (Fibonacci numbers). Alternating row sums: essentially 5*A081567.

Examples

			First eight rows:
    1,    -1;
    2,    -2,    1;
    5,    -6,    3,    -1;
   13,   -20,   12,    -4,   1;
   34,   -65,   50,   -20,   5,   -1;
   89,  -204,  195,  -100,  30,   -6,   1;
  233,  -623,  714,  -455, 175,  -42,   7, -1;
  610, -1864, 2492, -1904, 910, -280,  56, -8,  1;
First eight polynomials:
1 - x
2 - 2 x + x^2
5 - 6 x + 3 x^2 - x^3
13 - 20 x + 12 x^2 - 4 x^3 + x^4
34 - 65 x + 50 x^2 - 20 x^3 + 5 x^4 - x^5
89 - 204 x + 195 x^2 - 100 x^3 + 30 x^4 - 6 x^5 + x^6
233 - 623 x + 714 x^2 - 455 x^3 + 175 x^4 - 42 x^5 + 7 x^6 - x^7
610 - 1864 x + 2492 x^2 - 1904 x^3 + 910 x^4 - 280 x^5 + 56 x^6 - 8 x^7 + x^8
		

Crossrefs

Programs

  • Mathematica
    g[x_, n_] := Numerator[ Factor[D[(1 - x)/(x^2 - 3 x + 1), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* polynomials *)
    h[n_] := CoefficientList[g[x, n]/n!, x]
    Table[h[n], {n, 0, 10}]
    Column[%] (* A328646 array *)

A122068 Expansion of x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3).

Original entry on oeis.org

1, 3, 10, 35, 126, 462, 1715, 6419, 24157, 91238, 345401, 1309574, 4970070, 18874261, 71705865, 272491891, 1035680954, 3936821259, 14965658694, 56893879910, 216295686467, 822315097387, 3126323230541, 11885921055638
Offset: 1

Views

Author

Gary W. Adamson, Oct 15 2006

Keywords

Crossrefs

Cf. A215007, A215008. - Roman Witula, May 16 2014

Programs

  • GAP
    a:=[1,3,10];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # G. C. Greubel, Oct 03 2019
  • Magma
    I:=[1,3,10]; [n le 3 select I[n] else 7*(Self(n-1) -2*Self(n-2) + Self(n-3)): n in [1..30]]; // G. C. Greubel, Oct 03 2019
    
  • Maple
    seq(coeff(series(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n =1..30); # G. C. Greubel, Oct 03 2019
  • Mathematica
    M = {{2,1,0,0,0,0}, {1,2,1,0,0,0}, {0,1,2,1,0,0}, {0,0,1,2,1,0}, {0,0,0, 1,2,1}, {0,0,0,0,1,2}}; v[1] = {1,1,1,1,1,1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n,30}]
    Rest@CoefficientList[Series[x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3), {x, 0, 30}], x] (* G. C. Greubel, Oct 03 2019 *)
    LinearRecurrence[{7,-14,7},{1,3,10},30] (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    Vec(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    def A122068_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-3*x)*(1-x)/(1-7*x+14*x^2-7*x^3)).list()
    a=A122068_list(30); a[1:] # G. C. Greubel, Oct 03 2019
    

Formula

From Roman Witula, May 16 2014: (Start)
a(n) = (1/2)*Sum_{k=0..2}(1 - 1/sqrt(7)*cot(2^k * alpha))* (2*sin(2^k * alpha))^(2n), where alpha := 2*Pi/7.
a(n) = (A215007(n) + A215008(n+1) - 2*A215008(n))/2. (End)
a(n) = binomial(2*n-1, n-1) + Sum_{k=1..n} (-1)^k*binomial(2*n, n+7*k). - Greg Dresden, Jan 28 2023

A217778 Expansion of (1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)).

Original entry on oeis.org

1, 3, 10, 34, 117, 407, 1429, 5055, 17986, 64278, 230473, 828391, 2982825, 10754459, 38811802, 140165322, 506449789, 1830590295, 6618524221, 23933966743, 86562282258, 313102489406, 1132598701585, 4097213146599, 14822370816337, 53623952036787
Offset: 0

Views

Author

Philippe Deléham, Mar 24 2013

Keywords

Comments

A diagonal of the square array A217770.

Crossrefs

Cf. A217770.

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^2*(1-3*x)/((1-3*x+x^2)*(1-5*x+5*x^2)))); // Bruno Berselli, Mar 28 2013
    
  • Mathematica
    LinearRecurrence[{8, -21, 20, -5}, {1, 3, 10, 34}, 26] (* Bruno Berselli, Mar 28 2013 *)
    CoefficientList[Series[(1-x)^2(1-3x)/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* Harvey P. Dale, Sep 26 2023 *)
  • Maxima
    makelist(expand(((3+sqrt(5))*(5+sqrt(5))^n-(3-sqrt(5))*(5-sqrt(5))^n+(1+sqrt(5))*(3+sqrt(5))^n-(1-sqrt(5))*(3-sqrt(5))^n)/(4*2^n*sqrt(5))), n, 0, 25); /* Bruno Berselli, Mar 28 2013 */

Formula

G.f.: (1-5*x+7*x^2-3*x^3)/(1-8*x+21*x^2-20*x^3+5*x^4).
a(n) = A081567(n) - A094865(n).
a(n) = A217770(n+1,n).
a(n) = 8*a(n-1) -21*a(n-2) +20*a(n-3) -5*a(n-4) for n>3, a(0)=1, a(1)=3, a(2)=10, a(3)=34.
a(n) = ((3+r)*(5+r)^n-(3-r)*(5-r)^n+(1+r)*(3+r)^n-(1-r)*(3-r)^n)/(4*r*2^n), where r=sqrt(5). [Bruno Berselli, Mar 28 2013]

A112091 Number of idempotent order-preserving partial transformations (of an n-element chain).

Original entry on oeis.org

1, 2, 6, 21, 76, 276, 1001, 3626, 13126, 47501, 171876, 621876, 2250001, 8140626, 29453126, 106562501, 385546876, 1394921876, 5046875001, 18259765626, 66064453126, 239023437501, 864794921876, 3128857421876, 11320312500001
Offset: 0

Views

Author

Abdullahi Umar, Aug 25 2008

Keywords

Examples

			a(2) = 6 because there are exactly 6 idempotent order-preserving partial transformations (on a 2-element chain), namely: the empty map, (1)->(1), (2)->(2), (1,2)->(1,1), (1,2)->(1,2), (1,2)->(2,2); the mappings are coordinate-wise.
		

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 2 else n eq 3 select 6 else 6*Self(n-1)-10*Self(n-2)+ 5*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 21 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==1+5(a[n-1]-a[n-2])},a[n], {n,30}] (* or *) LinearRecurrence[{6,-10,5},{1,2,6},31] (* Harvey P. Dale, Aug 20 2011 *)
  • PARI
    Vec((2*x-1)^2/(1-x)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Aug 21 2011

Formula

a(n) = ((sqrt(5))^(n - 1))*(((sqrt(5) + 1)/2)^n - ((sqrt(5) - 1)/2)^n) + 1. [corrected by Jason Yuen, Sep 06 2024]
a(n) = 1 + 5*(a(n-1) - a(n-2)), a(0) = 1, a(1) = 2.
G.f.: (1 - 2*x)^2/((1 - x)*(1 - 5*x + 5*x^2)). Convolution of A081567 with the sequence 1, -1, -1, -1 (-1 continued). - R. J. Mathar, Sep 06 2008
a(n) = 1 + A030191(n-1). - R. J. Mathar, Jun 20 2011
a(n) = 6*a(n-1) - 10*a(n-2) + 5*a(n-3); a(0) = 1, a(1) = 2, a(2) = 6. - Harvey P. Dale, Aug 20 2011
E.g.f.: exp(x) + (exp((5 + sqrt(5))*x/2) - exp((5 - sqrt(5))*x/2))/sqrt(5). - Franck Maminirina Ramaharo, Nov 09 2018

A114164 Riordan array (1/(1-2x), x(1-x)/(1-2x)^2).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 18, 8, 1, 16, 56, 41, 11, 1, 32, 160, 170, 73, 14, 1, 64, 432, 620, 377, 114, 17, 1, 128, 1120, 2072, 1666, 704, 164, 20, 1, 256, 2816, 6496, 6608, 3649, 1178, 223, 23, 1, 512, 6912, 19392, 24192, 16722, 7001, 1826, 291, 26, 1, 1024, 16640, 55680, 83232, 69876, 36365, 12235, 2675, 368, 29, 1
Offset: 0

Views

Author

Paul Barry, Nov 15 2005

Keywords

Comments

Row sums are A081567. Diagonal sums are A085810. Product of Pascal triangle A007318 and Morgan-Voyce triangle A085478.
Unsigned version of A123876. - Philippe Deléham, Oct 25 2007

Examples

			Triangle begins:
   1;
   2,   1;
   4,   5,   1;
   8,  18,   8,  1;
  16,  56,  41, 11,  1;
  32, 160, 170, 73, 14, 1;
  ...
		

Crossrefs

T(2n,n) gives A026000.

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n, j)*C(j+k, 2k);
T(n,k) = Sum_{j=0..n} C(n, k+j)*C(k, k-j)*2^(n-k-j);
T(n,k) = Sum_{j=0..n-k} C(n+k-j, n-k-j)*C(k, j)*(-1)^j*2^(n-k-j).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014

Extensions

More terms from Michel Marcus, Sep 09 2024
Previous Showing 11-20 of 28 results. Next