cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A083029 Triangle read by rows: T(n,k), n >=1, 0 <= k <= C(n,k), = number of n X n symmetric positive semi-definite matrices with 2's on the main diagonal and 1's and 0's elsewhere and with k 1's above the diagonal.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 45, 120, 210, 192, 200, 90, 45, 10, 1, 1, 15, 105, 455, 1365, 2517, 3805, 3975, 3690, 2910, 1548, 975, 255, 105, 15, 1, 1, 21, 210, 1330, 5985, 18207, 39557, 71235, 95130, 115115, 110670, 104265, 72520, 56070, 32445, 15862, 7434, 2730, 665, 210, 21, 1, 1, 28, 378, 3276, 20475, 91392, 288596, 692576, 1374597, 2161180, 3247622, 3740016, 4422915, 4117512, 3886200, 3044048, 2579780, 1591296, 1111768, 628600, 323148, 148184, 65576, 20160, 7105, 1540, 378, 28, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2003

Keywords

Examples

			1;
1,1;
1,3,3,1;
1,6,15,20,15,6,1;
...
		

Crossrefs

Rows sums give A085658.
A038379(n) = Sum_{k=0..C(n,2)} 2^k * T(n,k).
A084546 is an upper bound.

Extensions

Rows n=6..8 added by Max Alekseyev, Jun 05 2024

A095351 Total number of edges in all labeled graphs on n nodes.

Original entry on oeis.org

0, 1, 12, 192, 5120, 245760, 22020096, 3758096384, 1236950581248, 791648371998720, 990791918021509120, 2434970217729660813312, 11787026741242634453385216, 112652543574969605015820304384
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2004

Keywords

Programs

  • Mathematica
    Table[(n*(n-1)/4)2^(n*(n-1)/2),{n,20}] (* Harvey P. Dale, Aug 16 2012 *)
    nn=14;f[x_,y_]:=Sum[(1+y)^Binomial[n,2]x^n/n!,{n,0,nn}];Drop[Range[0,nn]!CoefficientList[Series[a=D[f[x,y],y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Sep 04 2013 *)

Formula

a(n) = (n*(n-1)/4)*2^(n*(n-1)/2). - Vladeta Jovovic, Jun 05 2004
a(n) = Sum_{k=0..binomial(n,2)} A084546(n,k)*k. - Geoffrey Critzer, Sep 04 2013

Extensions

More terms from Vladeta Jovovic, Jun 05 2004

A123527 Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, n-1 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 1, 3, 1, 16, 15, 6, 1, 125, 222, 205, 120, 45, 10, 1, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1, 262144, 1436568
Offset: 1

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

Examples

			Triangle begins:
n = 1
  k = 0: 1
  ****** total(1) = 1
n = 2
  k = 1: 1
  ****** total(2) = 1
n = 3
  k = 2: 3
  k = 3: 1
  ****** total(3) = 4
n = 4
  k = 3: 16
  k = 4: 15
  k = 5:  6
  k = 6:  1
  ****** total(4) = 38
n = 5
  k = 4: 125
  k = 5: 222
  k = 6: 205
  k = 7: 120
  k = 8:  45
  k = 9:  10
  k = 10:  1
  ****** total(5) = 728
		

References

  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - From N. J. A. Sloane, Apr 06 2012
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

See A062734 for another version with more information. Row sums give A001187.

Programs

  • Mathematica
    nn = 8; a = Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 0, nn}]; f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Log[a], {x, 0, nn}], {x, y}],1]]] (* Geoffrey Critzer, Dec 08 2011 *)
    T[ n_, k_] := If[ n < 1, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, n - 1 + k]]; (* Michael Somos, Aug 12 2017 *)

Formula

For k >= C(n-1, 2) + 1 (not smaller!), T(n,k) = C(C(n,2),k) where C(n,k) is the binomial coefficient. See A084546. - Geoffrey Critzer, Dec 08 2011

A240439 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 105, 114, 39, 3, 1, 15, 105, 420, 969, 1194, 654, 102, 3, 1, 21, 210, 1260, 4773, 11259, 15615, 11412, 3663, 342, 15, 1, 28, 378, 3150, 17415, 64776, 159528, 250233, 234609, 119259, 28395, 2613, 69, 1, 36, 630, 6930
Offset: 1

Views

Author

Heinrich Ludwig, Apr 05 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A240114(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle is given by A240114(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  105,  114,    39,     3;
  1, 15, 105,  420,  969,  1194,   654,   102,    3;
  1, 21, 210, 1260, 4773, 11259, 15615, 11412, 3663, 342, 15;
There are T(5, 8) = 3 ways to place 8 points (x) on a triangular grid of side 5 under the conditions mentioned above:
          .                x                x
         x x              x .              . x
        x . x            x . .            . . x
       x . . x          x . . .          . . . x
      x . . . x        . x x x x        x x x x .
		

Crossrefs

column 2 is A000217,
column 3 is A050534,
column 4 is A240440,
column 5 is A240441,
column 6 is A240442.

A331505 Number of labeled graphs with n nodes and floor(n/2) edges.

Original entry on oeis.org

1, 1, 3, 15, 45, 455, 1330, 20475, 58905, 1221759, 3478761, 90858768, 256851595, 8093990190, 22760723700, 840261910995, 2353351951665, 99615373765775, 278110855548955, 13278694407181203, 36976937738226486
Offset: 1

Views

Author

Washington Bomfim, Jan 18 2020

Keywords

Comments

Considering the permutation model of graph evolution (see the Flajolet reference) with 2n vertices initially isolated, the probability of the occurrence of an acyclic graph at the critical point n is Pp(n) = A302112(n)/a(2n). Note that a(2n) is the number of labeled graphs with 2n nodes and n edges.
Since a(2n) = C(C(2n, 2), n) we have Pp(n)= A302112(n)/C(C(2n, 2), n).
Therefore, by Vaclav Kotesovec's approximation in A302112, Pp(n) ~ e^(3/4) * P(n), where P(n) = c1 / n^(1/6) is the corresponding probability in the uniform model. Cf. A331500.
If t < n, P(n) is a lower bound of P(t). If t > n, P(n) is an upper bound of P(t). Here P(t) is the probability of an acyclic graph in time t.
Concerning the permutation model, the presence of cycles in graphs evolving near the critical time should be estimated by the above approximation.

Examples

			a(4) is 15 because for n = 4, floor(n/2) = 2, and there are two graphs with four points and two edges. See the figure below or the J. Riordan reference.
The non-isomorphic graphs with four nodes and two edges along with the corresponding number of labeled graphs are as follows:
.
  *--*     *  *
  |        |  |
  |        |  |
  *  *     *  *
   12        3
Pp(2) = A302112(2)/a(4) = 15/15 = 1. All the graphs with four nodes and two edges are acyclic.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 109.

Crossrefs

Cf. A000717, A084546, A331504, A302112 (numerators of Pp(n)), A331500, A331501.

Programs

  • PARI
    C(x, y) = binomial(x, y);
    a(n) = C(C(n,2), n\2);
    A302112(n)={my(S=0, j); /* From Jon E. Schoenfield's formula in A302112. */
    for(j = 0, n,
       S+=(-1/2)^j* C(n, j) * C(2*n-1, n+j-1) * (2*n)^(n-j) * (n+j)!
       );
    (1/n!)*S
    }; /* end A302112(n) */
    c1 = (2/3)^(1/3) * sqrt(Pi) / gamma(1/3);
    UpBoundP(n) = c1 / n^(1/6);            /* Approximation for P(n) */
    UpBoundPp(n) = exp(3/4) * UpBoundP(n); /* Approximation for Pp(n) */
    Pp(n) = A302112(n)/a(2*n);
    Ratio(n) = UpBoundPp(n) / Pp(n);

Formula

a(n) = C( C(n,2), floor(n/2) ).

A243211 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 107, 128, 63, 10, 1, 15, 105, 428, 1062, 1566, 1276, 507, 69, 1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1, 1, 28, 378, 3198, 18591, 77124, 231090, 498097, 759117, 792942, 540361, 222597, 49053
Offset: 1

Views

Author

Heinrich Ludwig, Jun 09 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  107,  128,    63,    10,
  1, 15, 105,  428, 1062,  1566,  1276,   507,    69,
  1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243207, A084546, A234251, A239567, A240439, A194136, A000217 (column 2), A050534 (column 3), A243212 (column 4), A243213 (column 5), A243214 (column 6).

A369928 Triangle read by rows: T(n,k) is the number of simple graphs on n labeled vertices with k edges and without endpoints, n >= 0, 0 <= k <= n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 6, 1, 1, 0, 0, 10, 15, 42, 90, 100, 45, 10, 1, 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1, 1, 0, 0, 35, 105, 462, 2310, 9495, 32130, 85365, 166341, 231861, 237125, 184380, 111870, 53634, 20307, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 1;
[2] 1, 0;
[3] 1, 0, 0,  1;
[4] 1, 0, 0,  4,  3,  6,    1;
[5] 1, 0, 0, 10, 15,  42,  90,  100,   45,   10,    1;
[6] 1, 0, 0, 20, 45, 162, 595, 1590, 3075, 3655, 2703, 1335, 455, 105, 15, 1;
		

Crossrefs

Row sums are A059167.
Cf. A084546, A123551 (unlabeled), A245796 (with endpoints).

Programs

  • PARI
    \\ row(n) gives n-th row as vector.
    row(n)={my(A=x/exp(x*y + O(x*x^n))); Vecrev(polcoef(serlaplace(exp(y*x^2/2 + O(x*x^n)) * sum(k=0, n, (1 + y)^binomial(k, 2)*A^k/k!)), n), 1 + binomial(n,2))}
    { for(n=0, 6, print(row(n))) }

Formula

T(n,k) = A084546(n,k) - A245796(n,k).
E.g.f.: exp(y*x^2/2) * Sum_{k>=0} (1 + y)^binomial(k, 2)*(x/exp(y*x))^k/k!.

A143899 Triangle read by rows: T(n,k)=number of simple graphs on n labeled nodes with k edges containing at least one cycle subgraph, n>=3, 3<=k<=C(n,2).

Original entry on oeis.org

1, 4, 15, 6, 1, 10, 85, 252, 210, 120, 45, 10, 1, 20, 285, 1707, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 35, 735, 6972, 37457, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1, 56, 1610
Offset: 3

Views

Author

Alois P. Heinz, Sep 04 2008

Keywords

Examples

			T(4,3) = 4, because 4 simple graphs on 4 labeled nodes with 3 edges contain a cycle subgraph:
..1-2...1-2...1.2...1.2..
..|/.....\|...|\...../|..
..3.4...3.4...3-4...3-4..
Triangle begins:
1;
4,   15,    6,    1;
10,  85,  252,  210,  120,   45,   10,    1;
20, 285, 1707, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1;
		

Crossrefs

Row sums give A143900. Cf. A084546, A138464, A007318.

Programs

  • Maple
    B:= proc(n) option remember; if n=0 then 0 else B(n-1) +n^(n-1) *x^n/n! fi end: BB:= proc(n) option remember; expand (B(n) -B(n)^2/2) end: f:= proc(k) option remember; if k=0 then 1 else unapply (f(k-1)(x) +x^k/k!, x) fi end: A:= proc(n,k) option remember; series(f(k)(BB(n)), x,n+1) end: aa:= (n,k)-> coeff (A(n,k), x,n) *n!: b:= (n,k)-> if k>=n then 0 else aa(n,n-k) -aa(n,n-k-1) fi: T:= (n,k)-> product (n*(n-1)/2-j, j=0..k-1)/k! -b(n,k): seq (seq (T(n,k), k=3..n*(n-1)/2), n=3..8);
  • Mathematica
    (* t = A138464 *) t[0, 0] = 1; t[n_, k_] /; (0 <= k <= n-1) := t[n, k] = Sum[(i+1)^(i-1)*Binomial[n-1, i]*t[n-i-1, k-i], {i, 0, k}]; t[, ] = 0; T[n_, k_] := Binomial[n*(n-1)/2, k]-t[n, k]; Table[Table[T[n, k], {k, 3, n*(n-1)/2}], {n, 3, 8}] // Flatten (* Jean-François Alcover, Feb 14 2014 *)

Formula

T(n,k) = A084546(n,k)-A138464(n,k).

A276639 Triangle T(m, n) = the number of point-labeled graphs with n points and m edges, no points isolated. By rows, n >= 0, ceiling(n/2) <= m <= binomial(n,2).

Original entry on oeis.org

1, 1, 3, 1, 3, 16, 15, 6, 1, 30, 135, 222, 205, 120, 45, 10, 1, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1
Offset: 1

Views

Author

David Pasino, Sep 08 2016

Keywords

Comments

The row sums are A006129, omitting row 1 and A006129(1).

Examples

			Triangle T(n, m) begins:
n/m  0  1  2  3   4    5    6    7    8    9   10
0    1  0  0  0   0    0    0    0    0    0   0
1    0  0  0  0   0    0    0    0    0    0   0
2    0  1  0  0   0    0    0    0    0    0   0
3    0  0  3  1   0    0    0    0    0    0   0
4    0  0  3  16  15   6    1    0    0    0   0
5    0  0  0  30  135  222  205  120  45   10  1
		

Crossrefs

Another version is A054548.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] (-1)^(n - k) Binomial[Binomial[k, 2], m], {k, 0, n}], {n, 7}, {m, Ceiling[n/2], Binomial[n, 2]}] /. {} -> {1} // Flatten (* Michael De Vlieger, Sep 19 2016 *)

Formula

T(n, m) = Sum_{k=0,..n} binomial(n, k) * (-1)^(n-k) * A084546(k, m).

A189831 Labeled simple graphs with n nodes and n-1 edges that are not trees.

Original entry on oeis.org

0, 0, 0, 4, 85, 1707, 37457, 921896, 25477371, 786163135, 26890701739, 1012165431744, 41638805754078, 1860589088529164, 89802422444553825, 4658465562594667088, 258566755450911870007, 15294477441385413149679, 960641026388207044487891, 63861339527473864490450300
Offset: 1

Views

Author

Geoffrey Critzer, Apr 28 2011

Keywords

Comments

Equivalently a(n) is the number of labeled simple graphs on n nodes having n-1 edges that have at least two connected components.
Evidently almost all such graphs are disconnected.

Examples

			a(4) = 4 because there are 20 labeled simple graphs on four nodes with three edges but 16 of these are connected i.e. they are trees.
		

Crossrefs

Programs

  • Magma
    [Binomial(Binomial(n,2),n-1) - n^(n-2): n in [1..20]]; // G. C. Greubel, Jan 14 2018
  • Mathematica
    Table[Binomial[Binomial[n,2],n-1]-n^(n-2),{n,1,20}]
  • PARI
    for(n=1,20, print1(binomial(binomial(n,2),n-1) - n^(n-2), ", ")) \\ G. C. Greubel, Jan 14 2018
    

Formula

a(n) = C(C(n,2),n-1) - n^(n-2) = A014068(n-1)-A000272(n), where C(x,y) is the binomial coefficient.
Previous Showing 11-20 of 21 results. Next