cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 86 results. Next

A069133 Centered 20-gonal (or icosagonal) numbers.

Original entry on oeis.org

1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, 9921, 10561, 11221, 11901, 12601, 13321, 14061, 14821, 15601, 16401, 17221, 18061, 18921, 19801
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 20, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Equals Narayana transform (A001263) of [1, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Semi-axis opposite to A033583 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5)=201 because 201 = 10*5^2 - 10*5 + 1 = 250 - 50 + 1.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = 10n^2 - 10n + 1.
a(n) = 20*n + a(n-1) - 20 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1 + 18*x + x^2)/(1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=21, a(2)=61. - Harvey P. Dale, Apr 29 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3/5)*Pi/2)/(2*sqrt(15)).
Sum_{n>=1} a(n)/n! = 11*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/e - 1. (End)
a(n) = 12*A000217(n-1) + A016754(n-1). - John Elias, Oct 23 2020
E.g.f.: exp(x)*(1 + 10*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A195142 Concentric 10-gonal numbers.

Original entry on oeis.org

0, 1, 10, 21, 40, 61, 90, 121, 160, 201, 250, 301, 360, 421, 490, 561, 640, 721, 810, 901, 1000, 1101, 1210, 1321, 1440, 1561, 1690, 1821, 1960, 2101, 2250, 2401, 2560, 2721, 2890, 3061, 3240, 3421, 3610, 3801, 4000, 4201, 4410, 4621, 4840, 5061, 5290
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric decagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 10, ..., and the same line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Main axis, perpendicular to A028895 in the same spiral.

Crossrefs

A033583 and A069133 interleaved.
Cf. A090771 (first differences).
Column 10 of A195040. - Omar E. Pol, Sep 28 2011

Programs

  • Haskell
    a195142 n = a195142_list !! n
    a195142_list = scanl (+) 0 a090771_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(10*n^2+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+10(n-1)},a[n],{n,50}] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,10,21},50] (* Harvey P. Dale, Sep 29 2011 *)

Formula

G.f.: -x*(1+8*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = -a(n-1) + 5*n^2 - 5*n + 1, a(0)=0. - Vincenzo Librandi, Sep 27 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = a(-n) = (10*n^2 + 3*(-1)^n - 3)/4.
a(n) = a(n-2) + 10*(n-1). (End)
a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4); a(0)=0, a(1)=1, a(2)=10, a(3)=21. - Harvey P. Dale, Sep 29 2011
Sum_{n>=1} 1/a(n) = Pi^2/60 + tan(sqrt(3/5)*Pi/2)*Pi/(2*sqrt(15)). - Amiram Eldar, Jan 16 2023

A211970 Square array read by antidiagonal: T(n,k), n >= 0, k >= 0, which arises from a generalization of Euler's Pentagonal Number Theorem.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 6, 3, 1, 1, 1, 10, 5, 2, 1, 1, 1, 16, 7, 3, 1, 1, 1, 1, 24, 11, 4, 2, 1, 1, 1, 1, 36, 15, 5, 3, 1, 1, 1, 1, 1, 54, 22, 7, 4, 2, 1, 1, 1, 1, 1, 78, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 112, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Omar E. Pol, Jun 10 2012

Keywords

Comments

In the infinite square array if k is positive then column k is related to the generalized m-gonal numbers, where m = k+4. For example: column 1 is related to the generalized pentagonal numbers A001318. Column 2 is related to the generalized hexagonal numbers A000217 (note that A000217 is also the entry for the triangular numbers). And so on...
In the following table Euler's Pentagonal Number Theorem is represented by the entries A001318, A195310, A175003 and A000041. It seems unusual that the partition numbers are located in a middle column (see below row 1 of the table):
========================================================
. Column k of
. this square
. Generalized Triangle Triangle array A211970
k m m-gonal "A" "B" [row sums of
. numbers triangle "B"
. (if k>=1) with a(0)=1,
. if k >= 0]
========================================================
...
It appears that column 2 of the square array is A006950.
It appears that column 3 of the square array is A036820.
The partial sums of column 0 give A015128. - Omar E. Pol, Feb 09 2014

Examples

			Array begins:
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
1,     1,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
2,     2,   1,   1,   1,   1,  1,  1,  1,  1,  1, ...
4,     3,   2,   1,   1,   1,  1,  1,  1,  1,  1, ...
6,     5,   3,   2,   1,   1,  1,  1,  1,  1,  1, ...
10,    7,   4,   3,   2,   1,  1,  1,  1,  1,  1, ...
16,   11,   5,   4,   3,   2,  1,  1,  1,  1,  1, ...
24,   15,   7,   4,   4,   3,  2,  1,  1,  1,  1, ...
36,   22,  10,   5,   4,   4,  3,  2,  1,  1,  1, ...
54,   30,  13,   7,   4,   4,  4,  3,  2,  1,  1, ...
78,   42,  16,  10,   5,   4,  4,  4,  3,  2,  1, ...
112,  56,  21,  12,   7,   4,  4,  4,  4,  3,  2, ...
160,  77,  28,  14,  10,   5,  4,  4,  4,  4,  3, ...
224, 101,  35,  16,  12,   7,  4,  4,  4,  4,  4, ...
312, 135,  43,  21,  13,  10,  5,  4,  4,  4,  4, ...
432, 176,  55,  27,  14,  12,  7,  4,  4,  4,  4, ...
...
		

Crossrefs

For another version see A195825.

Formula

T(n,k) = A211971(n), if k = 0.
T(n,k) = A195825(n,k), if k >= 1.

A051874 22-gonal numbers: a(n) = n*(10*n-9).

Original entry on oeis.org

0, 1, 22, 63, 124, 205, 306, 427, 568, 729, 910, 1111, 1332, 1573, 1834, 2115, 2416, 2737, 3078, 3439, 3820, 4221, 4642, 5083, 5544, 6025, 6526, 7047, 7588, 8149, 8730, 9331, 9952, 10593, 11254, 11935, 12636, 13357, 14098, 14859
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 22,... and the parallel line from 1, in the direction 1, 63,..., in the square spiral whose vertices are the generalized 22-gonal numbers. - Omar E. Pol, Jul 18 2012
Also sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 22,..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 29 2012
This is also a star hendecagonal number: a(n) = A051682(n) + 11*A000217(n-1). - Luciano Ancora, Mar 30 2015

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+20 od: seq(a[n], n=0..39); # Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (10 n -9), {n, 0, 40}] (* Harvey P. Dale, Sep 19 2011 *)
    CoefficientList[Series[x (1 + 19 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
  • PARI
    a(n)=n*(10*n-9) \\ Charles R Greathouse IV, Jan 24 2014

Formula

a(n) = 2*a(n-1)-a(n-2)+20 with n>1, a(0)=0, a(1)=1. - Zerinvary Lajos, Feb 18 2008
a(n) = 20*n+a(n-1)-19 with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+19*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(20*a(n)+191*n+1) = a(20*a(n)+191*n) + a(20*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 10/11. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 10*x^2). - Nikolaos Pantelidis, Feb 05 2023

A033571 a(n) = (2*n + 1)*(5*n + 1).

Original entry on oeis.org

1, 18, 55, 112, 189, 286, 403, 540, 697, 874, 1071, 1288, 1525, 1782, 2059, 2356, 2673, 3010, 3367, 3744, 4141, 4558, 4995, 5452, 5929, 6426, 6943, 7480, 8037, 8614, 9211, 9828, 10465, 11122, 11799, 12496, 13213, 13950, 14707, 15484, 16281, 17098, 17935, 18792, 19669, 20566, 21483
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. This is one of the diagonals in the spiral. - Omar E. Pol, Sep 10 2011
Also sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is a line perpendicular to the main axis A195015 in the same spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Programs

Formula

a(n) = A153126(2*n) = A000566(2*n+1). - Reinhard Zumkeller, Dec 20 2008
From Reinhard Zumkeller, Mar 13 2009: (Start)
a(n) = A008596(n) + A158186(n), for n > 0.
a(n) = A010010(n) - A158186(n). (End)
a(n) = a(n-1) + 20*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 15*x + 4*x^2)/(1-x)^3.
E.g.f.: (1 + 17*x + 10*x^2)*exp(x). (End)
a(n) = A003154(n+1) + A007742(n). - Leo Tavares, Mar 27 2022
Sum_{n>=0} 1/a(n) = sqrt(1+2/sqrt(5))*Pi/6 + sqrt(5)*log(phi)/6 + 5*log(5)/12 - 2*log(2)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022

Extensions

Terms a(36) onward added by G. C. Greubel, Oct 12 2019

A113429 Expansion of f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 31 2005

Keywords

Comments

For the g.f. identity see the Hardy-Wright reference, Theorem 355 on p. 284. - Wolfdieter Lang, Oct 28 2016

Examples

			G.f. = 1 - x - x^4 + x^7 + x^13 - x^18 - x^27 + x^34 + x^46 - x^55 - x^70 + ...
G.f. = q^9 - q^49 - q^169 + q^289 + q^529 - q^729 - q^1089 + q^1369 + q^1849 + ...
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 93.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^5] QPochhammer[ x^4, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Jun 26 2017 *)
    a[ n_] := Module[{m = 40 n + 9, k}, If[IntegerQ[k = Sqrt[m]], If[Mod[k, 10] == 7, k = -k]; (-1)^Quotient[k, 10], 0]]; (* Michael Somos, Jun 26 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 - x^k*[1, 1, 0, 0, 1][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(m, k); if( n<0, 0, issquare(m = 40*n + 9, &k), if( k%10==7, k=-k); (-1)^(k\10), 0)}; /* Michael Somos, Oct 29 2016 */

Formula

Euler transform of period 5 sequence [-1, 0, 0, -1, -1, ...].
|a(n)| is the characteristic function of A085787.
G.f.: Product_{k>0} (1 - x^(5*k)) * (1 - x^(5*k-1)) * (1 - x^(5*k-4)) = Sum_{k in Z} (-1)^k * x^((5*k^2+3*k)/2).
f(a, b) = Sum_{k in Z} a^((k^2+k)/2) * b^((k^2-k)/2) is Ramanujan's general theta function.
G.f.: Sum_{n>=0} (x^(n*(n+1)) * Product_{k>=n+1} (1-x^k)). - Joerg Arndt, Apr 07 2011
From Wolfdieter Lang, Oct 30 2016: (Start)
a(n) = (-1)^k if n = b(2*k) for k >= 0, a(n) = (-1)^k if n = b(2*k-1), for k >= 1, and a(n) = 0 otherwise, where b(n) = A085787(n). See the second formula.
G.f.: Sum_{n>=0} (-1)^n*x^(n*(5*n+3)/2)*(1-x^(2*n+1)). See the Hardy reference, p. 93, G_1(x,x) from eq. (6.11.1) with C_n(x,x) = 1.
(End)
G.f.: Sum_{n>=0} (-1)^n*x^(n*(5*n-3)/2)*(1-x^(4*(2*n+1))). Reordered G_1(x,x) from the preceding formula. This is G_4(x,x) from Hardy, p. 93, eq. (6.11.1) with C_n(x,x) = 1. Note that Hardy uses only G_0, G_1 and G_2. - Wolfdieter Lang, Nov 01 2016
a(n) = -(1/n)*Sum_{k=1..n} A284361(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A133100 Expansion of f(x, x^4) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 11 2007

Keywords

Examples

			G.f. = 1 + x + x^4 + x^7 + x^13 + x^18 + x^27 + x^34 + x^46 + x^55 + x^70 + ...
G.f. = q^9 + q^49 + q^169 + q^289 + q^529 + q^729 + q^1089 + q^1369 + q^1849 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^5] QPochhammer[ -x^4, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
    a[ n_] := SquaresR[ 1, 40 n + 9] / 2; (* Michael Somos, Jan 30 2017 *)
    a[ n_] := If[n < 0, 0, Boole @ IntegerQ @ Sqrt @ (40 n + 9)]; (* Michael Somos, Jan 30 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1,n, 1 + x^k*[-1, 1, 0, 0, 1][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = issquare( 40*n + 9)};

Formula

f(x,x^m) = 1 + Sum_{k=1..oo} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
The characteristic function of A085787 generalized heptagonal numbers.
Euler transform of period 10 sequence [1, -1, 0, 1, -1, 1, 0, -1, 1, -1, ...].
G.f.: Prod_{k>0} (1 - x^(5*k)) * (1 + x^(5*k - 1)) * (1 + x^(5*k - 4)) = Sum_{k in Z} x^((5*k^2 + 3*k) / 2).
a(n) = |A113429(n)|. a(3*n + 2) = 0.
Sum_{k=1..n} a(k) ~ 2 * sqrt(2/5) * sqrt(n). - Amiram Eldar, Jan 13 2024

A152745 5 times hexagonal numbers: 5*n*(2*n-1).

Original entry on oeis.org

0, 5, 30, 75, 140, 225, 330, 455, 600, 765, 950, 1155, 1380, 1625, 1890, 2175, 2480, 2805, 3150, 3515, 3900, 4305, 4730, 5175, 5640, 6125, 6630, 7155, 7700, 8265, 8850, 9455, 10080, 10725, 11390, 12075, 12780, 13505, 14250, 15015
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 18 2011
Also sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is one of the four semi-diagonals of the spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Bisection of A028895.

Programs

  • Magma
    [5*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0, 5, 30}, 50] (* or *) Table[5*n*(2*n-1), {n,0,50}] (* G. C. Greubel, Sep 01 2018 *)
  • PARI
    a(n)=5*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = 10*n^2 - 5*n = A000384(n)*5.
a(n) = a(n-1) + 20*n-15 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 5*x*(1+ 3*x)/(1-x)^3.
E.g.f.: 5*x*(1+2*x)*exp(x). (End)
From Vaclav Kotesovec, Sep 02 2018: (Start)
Sum_{n>=1} 1/a(n) = 2*log(2)/5.
Sum_{n>=1} (-1)^n/a(n) = log(2)/5 - Pi/10. (End)

A158187 a(n) = 10*n^2 + 1.

Original entry on oeis.org

1, 11, 41, 91, 161, 251, 361, 491, 641, 811, 1001, 1211, 1441, 1691, 1961, 2251, 2561, 2891, 3241, 3611, 4001, 4411, 4841, 5291, 5761, 6251, 6761, 7291, 7841, 8411, 9001, 9611, 10241, 10891, 11561, 12251, 12961, 13691, 14441, 15211, 16001, 16811, 17641
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 13 2009

Keywords

Comments

Sequence found by reading the segment (1, 11) together with the line from 11, in the direction 11, 41, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011
The identity (10n^2 + 1)^2 - (25n^2 + 5)*(2n)^2 = 1 can be written as a(n)^2 - A158445(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Jan 03 2012

Crossrefs

Cf. A158445, A005843. - Vincenzo Librandi, Mar 19 2009

Programs

Formula

a(n) = A033583(n) + 1.
For n > 0: a(n) = A010010(n)/2.
From Vincenzo Librandi, Jan 03 2012: (Start)
G.f: x*(11 + 8*x + x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(10))*coth(Pi/sqrt(10)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(10))*csch(Pi/sqrt(10)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(10))*sinh(Pi/sqrt(5)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(10))*csch(Pi/sqrt(10)). (End)
E.g.f.: exp(x)*(1 + 10*x + 10*x^2). - Stefano Spezia, Feb 05 2021

A210977 A005475 and positive terms of A000566 interleaved.

Original entry on oeis.org

0, 1, 3, 7, 11, 18, 24, 34, 42, 55, 65, 81, 93, 112, 126, 148, 164, 189, 207, 235, 255, 286, 308, 342, 366, 403, 429, 469, 497, 540, 570, 616, 648, 697, 731, 783, 819, 874, 912, 970, 1010, 1071, 1113, 1177, 1221, 1288, 1334, 1404, 1452, 1525, 1575, 1651, 1703, 1782, 1836, 1918, 1974, 2059
Offset: 0

Views

Author

Omar E. Pol, Aug 03 2012

Keywords

Comments

Vertex number of a square spiral similar to A085787.
Partial sums of the sequence formed by A005843 and A016777 interleaved.

Crossrefs

Members of this family are A093005, this sequence, A006578, A210978, A181995, A210981, A210982.

Formula

G.f.: -x*(1+2*x+2*x^2) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 07 2012
a(n) = (10*n^2+6*n-1-(2*n-1)*(-1)^n)/16. - Luce ETIENNE, Oct 04 2014
Previous Showing 41-50 of 86 results. Next