cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 86 results. Next

A316672 Numbers k for which 120*k + 169 is a square.

Original entry on oeis.org

-1, 0, 1, 3, 10, 14, 17, 22, 36, 43, 48, 56, 77, 87, 94, 105, 133, 146, 155, 169, 204, 220, 231, 248, 290, 309, 322, 342, 391, 413, 428, 451, 507, 532, 549, 575, 638, 666, 685, 714, 784, 815, 836, 868, 945, 979, 1002, 1037, 1121, 1158, 1183, 1221, 1312, 1352, 1379, 1420
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2018

Keywords

Comments

All terms of A303305 belong to this sequence.

Crossrefs

Subsequence of A047283.
Cf. Numbers k for which 8*(2*h+1)*k + (2*h-1)^2 is a square: A000217 (h=0), A001318 (h=1), A085787 (h=2), A118277 (h=3), A195160 (h=4), A195313 (h=5), A277082 (h=6), this sequence (h=7), A303813 (h=8), A303298 (h=9); A303815 (h=13).

Programs

  • Magma
    [k: k in [0..1500] | IsSquare(120*k+169)];
    
  • Maple
    select(k->issqr(120*k+169),[$-1..1500]); # Muniru A Asiru, Jul 10 2018
  • Mathematica
    LinearRecurrence[{1, 0, 0, 2, -2, 0, 0, -1, 1}, {-1, 0, 1, 3, 10, 14, 17, 22, 36}, 60]
  • PARI
    isok(n) = issquare(120*n+169); \\ Michel Marcus, Jul 11 2018
    
  • PARI
    Vec(x*(-1 + x + x^2 + 2*x^3 + 9*x^4 + 2*x^5 + x^6 + x^7 - x^8)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2) + O(x^40)) \\ Colin Barker, Jul 18 2018
  • Sage
    print([k for k in (0..1500) if is_square(120*k+169)])
    

Formula

O.g.f.: x*(-1 + x + x^2 + 2*x^3 + 9*x^4 + 2*x^5 + x^6 + x^7 - x^8)/((1 + x)^2*(1 - x)^3*(1 + x^2)^2).
a(n) = a(1-n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9).
a(n) = (30*n^2 - 2*(15 + 3*(-1)^n + 10*i^(n*(n+1)))*n + 2*(5 + (-1)^n)*i^(n*(n+1)) + 3*(-1)^n - 79)/64, with i = sqrt(-1). Therefore:
a(4*k+1) = (3*k + 2)*(5*k - 1)/2;
a(4*k+2) = k*(15*k + 13)/2, first bisection of A303305;
a(4*k+3) = (k + 1)*(15*k + 2)/2, second bisection of A303305 (see A051869);
a(4*k+4) = (3*k + 1)*(5*k + 6)/2.

A274579 Values of k such that 2*k+1 and 5*k+1 are both triangular numbers.

Original entry on oeis.org

0, 1, 7, 27, 540, 2002, 10660, 39501, 779247, 2887450, 15372280, 56960982, 1123674201, 4163701465, 22166817667, 82137697110, 1620337419162, 6004054625647, 31964535704101, 118442502272205, 2336525434757970, 8657842606482076, 46092838318496542
Offset: 1

Views

Author

Colin Barker, Jun 29 2016

Keywords

Comments

Intersection of A074377 and A085787.

Examples

			7 is in the sequence because 2*7+1 = 15, 5*7+1 = 36, and 15 and 36 are both triangular numbers.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^2*(1+6*x+20*x^2+513*x^3+20*x^4+6*x^5+x^6)/((1-x)*(1+6*x-x^2)*(1-6*x-x^2)*(1+38*x^2+x^4)) + O(x^30)))
    
  • PARI
    isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(5*n+1, 3); \\ Michel Marcus, Jun 29 2016

Formula

G.f.: x^2*(1+6*x+20*x^2+513*x^3+20*x^4+6*x^5+x^6) / ((1-x)*(1+6*x-x^2)*(1-6*x-x^2)*(1+38*x^2+x^4)).

A158447 a(n) = 10*n^2 - 1.

Original entry on oeis.org

9, 39, 89, 159, 249, 359, 489, 639, 809, 999, 1209, 1439, 1689, 1959, 2249, 2559, 2889, 3239, 3609, 3999, 4409, 4839, 5289, 5759, 6249, 6759, 7289, 7839, 8409, 8999, 9609, 10239, 10889, 11559, 12249, 12959, 13689, 14439, 15209, 15999, 16809, 17639
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

Sequence found by reading the line from 9, in the direction 9, 39, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

  • Magma
    I:=[9, 39, 89]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Maple
    A158447:=n->10*n^2-1: seq(A158447(n), n=1..100); # Wesley Ivan Hurt, Apr 26 2017
  • Mathematica
    Table[10n^2-1,{n,50}]
    LinearRecurrence[{3,-3,1},{9,39,89},50] (* Harvey P. Dale, Dec 08 2017 *)
  • PARI
    a(n) = 10*n^2 - 1.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(9 + 12*x - x^2)/(1 - x)^3.
a(n) = A033583(n) - 1. - Omar E. Pol, Jul 18 2012
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(10))*cot(Pi/sqrt(10)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(10))*csc(Pi/sqrt(10)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(10))*csc(Pi/sqrt(10)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(10))*sin(Pi/sqrt(5))/sqrt(2). (End)
E.g.f.: exp(x)*(10*x^2 + 10*x - 1) + 1. - Stefano Spezia, Aug 25 2022

A247643 a(n) = ( 10*n*(n+1)+(2*n+1)*(-1)^n+7 )/8.

Original entry on oeis.org

1, 3, 9, 15, 27, 37, 55, 69, 93, 111, 141, 163, 199, 225, 267, 297, 345, 379, 433, 471, 531, 573, 639, 685, 757, 807, 885, 939, 1023, 1081, 1171, 1233, 1329, 1395, 1497, 1567, 1675, 1749, 1863, 1941, 2061, 2143, 2269, 2355, 2487, 2577, 2715, 2809, 2953, 3051
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2014

Keywords

Comments

From Paul Curtz, Jan 01 2020: (Start)
In the following pentagonal spiral of odd numbers
101
99 61 63
97 59 31 33 65
95 57 29 11 13 35 67
93 55 27 9 1 3 15 37 69
91 53 25 7 5 17 39 71
89 51 23 21 19 41 73
87 49 47 45 43 75
85 83 81 79 77
the terms of this sequence appear on the x axis. A062786 and A172043 are in the spiral as well. (End)

Crossrefs

A diagonal of triangle in A247646.

Programs

  • Maple
    f:=n->(10*n*(n+1)+(2*n+1)*(-1)^n+7)/8;
  • Mathematica
    Table[(10 n (n + 1) + (2 n + 1) (-1)^n + 7)/8, {n, 0, 60}] (* Vincenzo Librandi, Sep 26 2014 *)
  • PARI
    Vec(-(x^4+2*x^3+4*x^2+2*x+1) / ((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 25 2014

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Sep 25 2014
G.f.: -(x^4+2*x^3+4*x^2+2*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 25 2014
From Paul Curtz, Jan 01 2020: (Start)
a(n) = 1 + 2*A085787(n).
a(n+1) = a(n-1) + A090772(n+1). (End)
E.g.f.: (1/4)*((1 + x)*(4 + 5*x)*cosh(x) + (3 + x*(11 + 5*x))*sinh(x)). - Stefano Spezia, Jan 01 2020

Extensions

More terms from Colin Barker, Sep 25 2014

A273368 Numbers k such that 10*k+9 is a perfect square.

Original entry on oeis.org

0, 4, 16, 28, 52, 72, 108, 136, 184, 220, 280, 324, 396, 448, 532, 592, 688, 756, 864, 940, 1060, 1144, 1276, 1368, 1512, 1612, 1768, 1876, 2044, 2160, 2340, 2464, 2656, 2788, 2992, 3132, 3348, 3496, 3724, 3880, 4120, 4284, 4536
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2), {x,0,50}], x] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 4, 16, 28, 52}, 50] (* G. C. Greubel, May 20 2016 *)
  • PARI
    is(n)=issquare(10*n+9) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 6*n, n>=0.
a(2n-1) = 10*n^2 - 6*n, n>=1.
G.f.: 4*x*(x^2+3x+1)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 9*x)*cosh(x) + (5*x^2 + 11*x -1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
a(n) = 4*A085787(n). - R. J. Mathar, Jun 03 2016

A274681 Numbers k such that 4*k + 1 is a triangular number.

Original entry on oeis.org

0, 5, 11, 26, 38, 63, 81, 116, 140, 185, 215, 270, 306, 371, 413, 488, 536, 621, 675, 770, 830, 935, 1001, 1116, 1188, 1313, 1391, 1526, 1610, 1755, 1845, 2000, 2096, 2261, 2363, 2538, 2646, 2831, 2945, 3140, 3260, 3465, 3591, 3806, 3938, 4163, 4301, 4536
Offset: 1

Views

Author

Colin Barker, Jul 02 2016

Keywords

Comments

Also, numbers of the form m*(8*m + 3) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Examples

			5 is in the sequence since 4*5 + 1 = 21 is a triangular number (21 = 1 + 2 + 3 + 4 + 5 + 6). - _Michael B. Porter_, Jul 03 2016
		

Crossrefs

Cf. A000217, A000096 (n+1), A074377 (2*n+1), A045943 (3*n+1), A085787 (5*n+1).
Cf. A057029.
Cf. similar sequences listed in A299645.

Programs

  • Magma
    [(1-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: n in [1..80]]; // Wesley Ivan Hurt, Jul 02 2016
    
  • Maple
    A274681:=n->(1-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: seq(A274681(n), n=1..100); # Wesley Ivan Hurt, Jul 02 2016
  • Mathematica
    Rest@ CoefficientList[Series[x^2 (5 + 6 x + 5 x^2)/((1 - x)^3 (1 + x)^2), {x, 0, 48}], x] (* Michael De Vlieger, Jul 02 2016 *)
    Select[Range[0,5000],OddQ[Sqrt[8(4#+1)+1]]&] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,5,11,26,38},50] (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    isok(n) = ispolygonal(4*n+1, 3)
    
  • PARI
    select(n->ispolygonal(4*n+1, 3), vector(10000, n, n-1))
    
  • PARI
    concat(0, Vec(x^2*(5+6*x+5*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))
    
  • Python
    def A274681(n): return (n>>1)*((n<<2)+(-1 if n&1 else -3)) # Chai Wah Wu, Mar 11 2025

Formula

G.f.: x^2*(5 + 6*x + 5*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = A057029(n) - 1.
a(n) = (1 - (-1)^n + 2*(-4 + (-1)^n)*n + 8*n^2)/4.
a(n) = (4*n^2 - 3*n)/2 for n even, a(n) = (4*n^2 - 5*n + 1)/2 for n odd.

A274757 Numbers k such that 6*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 9, 15, 42, 54, 99, 117, 180, 204, 285, 315, 414, 450, 567, 609, 744, 792, 945, 999, 1170, 1230, 1419, 1485, 1692, 1764, 1989, 2067, 2310, 2394, 2655, 2745, 3024, 3120, 3417, 3519, 3834, 3942, 4275, 4389, 4740, 4860, 5229, 5355, 5742, 5874, 6279, 6417
Offset: 1

Views

Author

Colin Barker, Jul 04 2016

Keywords

Comments

Numbers of the type floor(3*m*(m+1)/4) for which floor(3*m*(m+1)/4) = 3*floor(m*(m+1)/4). A014601 lists the values of m. - Bruno Berselli, Jan 13 2017
Numbers of the form 3*k*(4*k + 1) for k in Z. - Peter Bala, Nov 21 2024

Crossrefs

Cf. A000096 (k+1), A074377 (2*k+1), A045943 (3*k+1), A274681 (4*k+1), A085787 (5*k+1).
Cf. similar sequences listed in A274830.

Programs

  • Mathematica
    Table[3 (2 n - 1) (2 n + (-1)^n - 1)/4, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,9,15,42,54},50] (* Harvey P. Dale, Apr 13 2025 *)
  • PARI
    isok(n) = ispolygonal(6*n+1, 3)
    
  • PARI
    select(n->ispolygonal(6*n+1, 3), vector(7000, n, n-1))
    
  • PARI
    concat(0, Vec(3*x^2*(3+2*x+3*x^2)/((1-x)^3*(1+x)^2) + O(x^60)))

Formula

G.f.: 3*x^2*(3 + 2*x + 3*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = 3*(2*n - 1)*(2*n + (-1)^n - 1)/4. Therefore:
a(n) = 3*n*(2*n - 1)/2 for n even,
a(n) = 3*(n-1)*(2*n - 1)/2 for n odd.

A274830 Numbers k such that 7*k+1 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 5, 11, 17, 27, 36, 50, 62, 80, 95, 117, 135, 161, 182, 212, 236, 270, 297, 335, 365, 407, 440, 486, 522, 572, 611, 665, 707, 765, 810, 872, 920, 986, 1037, 1107, 1161, 1235, 1292, 1370, 1430, 1512, 1575, 1661, 1727, 1817, 1886, 1980, 2052, 2150, 2225
Offset: 1

Views

Author

Colin Barker, Jul 08 2016

Keywords

Comments

From Peter Bala, Nov 21 2024: (Start)
Numbers of the form n*(7*n + 3)/2 for n in Z. Cf. A057570.
The sequence terms occur as the exponents in the expansion of Product_{n >= 1} (1 - x^(7*n)) * (1 + x^(7*n-2)) * (1 + x^(7*n-5)) = 1 + x^2 + x^5 + x^11 + x^17 + x^27 + x^36 + .... Cf. A363800. (End)

Crossrefs

Cf. similar sequences where k*n+1 is a triangular number: A000096 (k=1), A074377 (k=2), A045943 (k=3), A274681 (k=4), A085787 (k=5), A274757 (k=6).

Programs

  • Mathematica
    Table[(14 (n - 1) n + (2 n - 1) (-1)^n + 1)/16, {n, 1, 60}] (* Bruno Berselli, Jul 08 2016 *)
  • PARI
    select(n->ispolygonal(7*n+1, 3), vector(3000, n, n-1))
    
  • PARI
    concat(0, Vec(x^2*(2+3*x+2*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))

Formula

G.f.: x^2*(2 + 3*x + 2*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = (14*(n - 1)*n + (2*n - 1)*(-1)^n + 1)/16. Therefore:
a(n) = n*(7*n - 6)/8 for n even,
a(n) = (n - 1)*(7*n - 1)/8 for n odd.
E.g.f.: (x*(7*x -1)*cosh(x) + (7*x^2 + x + 1)*sinh(x))/8. - Stefano Spezia, Nov 26 2024

Extensions

Edited by Bruno Berselli, Jul 08 2016

A303301 Square array T(n,k) read by antidiagonals upwards in which row n is obtained by taking the general formula for generalized n-gonal numbers: m*((n - 2)*m - n + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and n >= 5. Here n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, -3, 0, 1, -2, 0, 0, 1, -1, 1, -8, 0, 1, 0, 2, -5, -3, 0, 1, 1, 3, -2, 0, -15, 0, 1, 2, 4, 1, 3, -9, -8, 0, 1, 3, 5, 4, 6, -3, -2, -24, 0, 1, 4, 6, 7, 9, 3, 4, -14, -15, 0, 1, 5, 7, 10, 12, 9, 10, -4, -5, -35, 0, 1, 6, 8, 13, 15, 15, 16, 6, 5, -20, -24, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, -5, -9, -48
Offset: 0

Views

Author

Omar E. Pol, Jun 08 2018

Keywords

Comments

Note that the formula mentioned in the definition gives several kinds of numbers, for example:
Row 0 and row 1 give A317300 and A317301 respectively.
Row 2 gives A001057 (canonical enumeration of integers).
Row 3 gives 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Row 4 gives A008794 (squares repeated) except the initial zero.
Finally, for n >= 5 row n gives the generalized k-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------
n\m  Seq. No.    0   1  -1   2  -2   3   -3    4   -4    5   -5
------------------------------------------------------------------
0    A317300:    0,  1, -3,  0, -8, -3, -15,  -8, -24, -15, -35...
1    A317301:    0,  1, -2,  1, -5,  0,  -9,  -2, -14,  -5, -20...
2    A001057:    0,  1, -1,  2, -2,  3,  -3,   4,  -4,   5,  -5...
3   (A008795):   0,  1,  0,  3,  1,  6,   3,  10,   6,  15,  10...
4   (A008794):   0,  1,  1,  4,  4,  9,   9,  16,  16,  25,  25...
5    A001318:    0,  1,  2,  5,  7, 12,  15,  22,  26,  35,  40...
6    A000217:    0,  1,  3,  6, 10, 15,  21,  28,  36,  45,  55...
7    A085787:    0,  1,  4,  7, 13, 18,  27,  34,  46,  55,  70...
8    A001082:    0,  1,  5,  8, 16, 21,  33,  40,  56,  65,  85...
9    A118277:    0,  1,  6,  9, 19, 24,  39,  46,  66,  75, 100...
10   A074377:    0,  1,  7, 10, 22, 27,  45,  52,  76,  85, 115...
11   A195160:    0,  1,  8, 11, 25, 30,  51,  58,  86,  95, 130...
12   A195162:    0,  1,  9, 12, 28, 33,  57,  64,  96, 105, 145...
13   A195313:    0,  1, 10, 13, 31, 36,  63,  70, 106, 115, 160...
14   A195818:    0,  1, 11, 14, 34, 39,  69,  76, 116, 125, 175...
15   A277082:    0,  1, 12, 15, 37, 42,  75,  82, 126, 135, 190...
...
		

Crossrefs

Columns 0..2 are A000004, A000012, A023445.
Column 3 gives A001477 which coincides with the row numbers.
Main diagonal gives A292551.
Row 0-2 gives A317300, A317301, A001057.
Row 3 gives 0 together with A008795.
Row 4 gives A008794.
For n >= 5, rows n gives the generalized n-gonal numbers: A001318 (n=5), A000217 (n=6), A085787 (n=7), A001082 (n=8), A118277 (n=9), A074377 (n=10), A195160 (n=11), A195162 (n=12), A195313 (n=13), A195818 (n=14), A277082 (n=15), A274978 (n=16), A303305 (n=17), A274979 (n=18), A303813 (n=19), A218864 (n=20), A303298 (n=21), A303299 (n=22), A303303 (n=23), A303814 (n=24), A303304 (n=25), A316724 (n=26), A316725 (n=27), A303812 (n=28), A303815 (n=29), A316729 (n=30).
Cf. A317302 (a similar table but with polygonal numbers).

Programs

  • Mathematica
    t[n_, r_] := PolygonalNumber[n, If[OddQ@ r, Floor[(r + 1)/2], -r/2]]; Table[ t[n - r, r], {n, 0, 11}, {r, 0, n}] // Flatten (* also *)
    (* to view the square array *)  Table[ t[n, r], {n, 0, 15}, {r, 0, 10}] // TableForm (* Robert G. Wilson v, Aug 08 2018 *)

Formula

T(n,k) = A194801(n-3,k) if n >= 3.

A087348 a(n) = 10*n^2 - 6*n + 1.

Original entry on oeis.org

5, 29, 73, 137, 221, 325, 449, 593, 757, 941, 1145, 1369, 1613, 1877, 2161, 2465, 2789, 3133, 3497, 3881, 4285, 4709, 5153, 5617, 6101, 6605, 7129, 7673, 8237, 8821, 9425, 10049, 10693, 11357, 12041, 12745, 13469, 14213, 14977, 15761, 16565, 17389, 18233, 19097
Offset: 1

Views

Author

Charlie Marion, Oct 20 2003

Keywords

Comments

Sequence found by reading the line from 5, in the direction 5, 29, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

Examples

			a(3)=73 since 73^2 = 48^2 + 55^2 = (4*12)^2 + (48 + 7)^2. See 1st formula.
		

Crossrefs

Programs

Formula

a(n)^2 = A033579(n)^2 + A033567(n)^2 = (4*A000326(n))^2 + (A033579(n) + A056220(n-1))^2.
From Colin Barker, Jun 30 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(5 + 14*x + x^2)/(1-x)^3. (End)
a(n) = 1 + A153784(n). - Omar E. Pol, Jul 18 2012
E.g.f.: exp(x)*(10*x^2 + 4*x + 1) - 1. - Elmo R. Oliveira, Oct 31 2024

Extensions

More terms from Ray Chandler, Oct 22 2003
Previous Showing 51-60 of 86 results. Next