cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A189833 a(n) = n^2 + 8.

Original entry on oeis.org

8, 9, 12, 17, 24, 33, 44, 57, 72, 89, 108, 129, 152, 177, 204, 233, 264, 297, 332, 369, 408, 449, 492, 537, 584, 633, 684, 737, 792, 849, 908, 969, 1032, 1097, 1164, 1233, 1304, 1377, 1452, 1529, 1608, 1689, 1772, 1857, 1944, 2033
Offset: 0

Views

Author

Keywords

Comments

From César Eliud Lozada, Mar 29 2021: (Start)
Numbers a(n) such that sqrt( a(n) + 4*n*sqrt(2) ) = n + 2*sqrt(2). Examples:
For n=1: sqrt( 9 + 4*sqrt(2)) = 1 + 2*sqrt(2),
For n=2: sqrt(12 + 8*sqrt(2)) = 2 + 2*sqrt(2),
For n=3: sqrt(17 + 12*sqrt(2)) = 3 + 2*sqrt(2). (End)

Crossrefs

Programs

Formula

From G. C. Greubel, Jan 13 2018: (Start)
G.f.: (8 - 15*x + 9*x^2)/(1 - x)^3.
E.g.f.: (8 + x + x^2)*exp(x). (End)
From Amiram Eldar, Jul 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*sqrt(2)*Pi*coth(2*sqrt(2)*Pi))/16.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*sqrt(2)*Pi*cosech(2*sqrt(2)*Pi))/16. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (sqrt(7/2)/2)*sinh(sqrt(7)*Pi)/sinh(2*sqrt(2)*Pi).
Product_{n>=0} (1 + 1/a(n)) = (3/(2*sqrt(2)))*sinh(3*Pi)/sinh(2*sqrt(2)*Pi). (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 29 2011

A085554 Greater of twin primes of the form x^2+2, x^2+4.

Original entry on oeis.org

5, 13, 229, 1093, 2029, 3253, 13693, 21613, 59053, 65029, 91813, 140629, 178933, 199813, 205213, 227533, 328333, 567013, 700573, 804613, 815413, 1071229, 2241013, 3629029, 4223029, 4347229, 4809253, 5212093, 5919493, 6185173
Offset: 1

Views

Author

Cino Hilliard, Jul 04 2003

Keywords

Comments

Except for the first term, all a(n)=13 (mod 72) with x=3 (mod 6). The lesser of the twin prime pair is given by A253639, the x-values in A086381. - M. F. Hasler, Jan 18 2015

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Table[x^2+{2,4},{x,5000}],AllTrue[#,PrimeQ]&]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 15 2015 *)
  • PARI
    is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4) \\ or is_A067201(x)&&is_A007591(x)
    A085554 = apply(A087475,select(is_A086381,vector(9999,n,n))) \\ A087475=x->x^2+4.
    write(f="b085554.txt",c=1," 5"); forstep(x=3,1e6,6,is_A086381(x)&&write(f,c++" "x^2+4))
    \\ M. F. Hasler, Jan 18 2015

Formula

A085554 = A087475 o A086381 = A020725^2 o A253639, i.e., a(n) = A087475(A086381(n)) = A253639(n)+2. - M. F. Hasler, Jan 18 2015

Extensions

Edited by Don Reble, May 03 2006
Definition corrected by Harvey P. Dale and Franklin T. Adams-Watters, Jan 15 2015

A156798 a(n) = n^4 + 5*n^2 + 4.

Original entry on oeis.org

4, 10, 40, 130, 340, 754, 1480, 2650, 4420, 6970, 10504, 15250, 21460, 29410, 39400, 51754, 66820, 84970, 106600, 132130, 162004, 196690, 236680, 282490, 334660, 393754, 460360, 535090, 618580, 711490, 814504, 928330, 1053700, 1191370
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^4+5*n^2+4: n in [0..50]];
    
  • Mathematica
    Table[n^4+5n^2+4, {n,0,40}]
  • PARI
    a(n)=n^4+5*n^2+4
    
  • Sage
    [(n^2 +1)*(n^2 +4) for n in (0..50)] # G. C. Greubel, Jun 10 2021

Formula

a(n) = A002522(n)*A087475(n) = A000290(n) + A000290(A059100(n)) = A028552(A002522(n)).
a(n) = (n^2 + 1)*(n^2 + 4) = n^2 + (n^2 + 2)^2.
G.f.: 2*(2 -5*x +15*x^2 -5*x^3 +5*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; corrected by R. J. Mathar, Sep 16 2009
a(0)=4, a(1)=10, a(2)=40, a(3)=130, a(4)=340, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 04 2011
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/8 - Pi*tanh(Pi)/24.
Sum_{n>=0} (-1)^n/a(n) = 1/8 + Pi*csch(Pi)/6 - Pi*csch(Pi)*sech(Pi)/24. (End)
E.g.f.: (4 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Jun 10 2021

A163253 An interspersion: the order array of the odd-numbered columns of the double interspersion at A161179.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 16, 10, 7, 6, 25, 17, 13, 11, 8, 36, 26, 21, 18, 14, 12, 49, 37, 31, 27, 22, 19, 15, 64, 50, 43, 38, 32, 28, 23, 20, 81, 65, 57, 51, 44, 39, 33, 29, 24, 100, 82, 73, 66, 58, 52, 45, 40, 34, 30, 121, 101, 91, 83, 74, 67, 59, 53, 46, 41, 35
Offset: 1

Views

Author

Clark Kimberling, Jul 23 2009

Keywords

Comments

A permutation of the natural numbers.
Row 1 consists of the squares.
Beginning with row 5, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1; thus disregarding row 1, the nonsquares are partitioned by this recurrence.
Except for initial terms, the first ten rows match A000290, A002522, A002061, A059100, A014209, A117950, A027688, A087475, A027689, A117951, and the first column, A035106.

Examples

			Corner:
1....4....9...16...25
2....5...10...17...26
3....7...13...21...31
6...11...18...27...38
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the even-numbered columns, leaving
1....7...17...
2....8...18...
5...13...25...
9...19...33...
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
		

Crossrefs

Formula

Let S(n,k) denote the k-th term in the n-th row. Three cases:
S(1,k)=k^2;
if n is even, then S(n,k)=k^2+(n-2)k+(n^2-2*n+4)/4;
if n>=3 is odd, then S(n,k)=k^2+(n-2)k+(n^2-2*n+1)/4.

Extensions

Edited and augmented by Clark Kimberling, Jul 24 2009

A189836 a(n) = n^2 + 11.

Original entry on oeis.org

11, 12, 15, 20, 27, 36, 47, 60, 75, 92, 111, 132, 155, 180, 207, 236, 267, 300, 335, 372, 411, 452, 495, 540, 587, 636, 687, 740, 795, 852, 911, 972, 1035, 1100, 1167, 1236, 1307, 1380, 1455, 1532, 1611, 1692, 1775, 1860, 1947
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Jan 13 2018: (Start)
G.f.: (11 - 21*x + 12*x^2)/(1 - x)^3.
E.g.f.: (11 + x + x^2)*exp(x). (End)
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(11)*Pi*coth(sqrt(11)*Pi))/22.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(11)*Pi*cosech(sqrt(11)*Pi))/22. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(10/11)*sinh(sqrt(10)*Pi)/sinh(sqrt(11)*Pi).
Product_{n>=0} (1 + 1/a(n)) = 2*sqrt(3/11)*sinh(2*sqrt(3)*Pi)/sinh(sqrt(11)*Pi). (End)

A155965 a(n) = n*(n^2+4).

Original entry on oeis.org

0, 5, 16, 39, 80, 145, 240, 371, 544, 765, 1040, 1375, 1776, 2249, 2800, 3435, 4160, 4981, 5904, 6935, 8080, 9345, 10736, 12259, 13920, 15725, 17680, 19791, 22064, 24505, 27120, 29915, 32896, 36069, 39440, 43015, 46800, 50801, 55024, 59475, 64160
Offset: 0

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Comments

The identity (n^3+4*n)^2 + (2*n^2+8)^2 = (n^2+4)^3 can be written as a(n)^2 + A155966(n)^2 = A087475(n)^3.

Crossrefs

Programs

Formula

G.f.: x*(5 - 4*x + 5*x^2)/(1 - x)^4. - Vincenzo Librandi, May 03 2014
a(n) = 4*a(n-1) - 6*a(n-2) +4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, May 03 2014
a(n) = A006003(n-1) + A006003(n+1). - Lechoslaw Ratajczak, Oct 31 2021

A155966 a(n) = 2*n^2 + 8.

Original entry on oeis.org

8, 10, 16, 26, 40, 58, 80, 106, 136, 170, 208, 250, 296, 346, 400, 458, 520, 586, 656, 730, 808, 890, 976, 1066, 1160, 1258, 1360, 1466, 1576, 1690, 1808, 1930, 2056, 2186, 2320, 2458, 2600, 2746, 2896, 3050, 3208, 3370, 3536, 3706, 3880, 4058, 4240, 4426, 4616
Offset: 0

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Comments

The identity (n^3 + 4*n)^2 + (2*n^2 + 8)^2 = (n^2 + 4)^3 can be written as A155965(n)^2 + a(n)^2 = A087475(n)^3.

Crossrefs

Cf. similar sequences listed in A255843.

Programs

Formula

G.f.: 2*(4 - 7*x + 5*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A087475(n). - Bruno Berselli, Mar 13 2015
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/16 + coth(2*Pi)*Pi/8.
Sum_{n>=0} (-1)^n/a(n) = 1/16 + cosech(2*Pi)*Pi/8. (End)
E.g.f.: 2*exp(x)*(4 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

Extensions

Offset changed from 1 to 0 and added a(0)=8 by Bruno Berselli, Mar 13 2015

A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

A permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2);
...

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   8  14  22  32 ...
   7   9   6  11  18  27 ...
  13  16  12  15  23  33 ...
  21  25  20  24  19  28 ...
  31  36  30  35  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  8,  9, 13;
  17, 14,  6, 16, 21;
  26, 22, 11, 12, 25, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-(j%2)*i+2-int((j+2)/2)
    else:
       result=j*j-((i%2)+1)*j + int((i+3)/2)

Formula

As a table:
T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k;
T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k.
As a linear sequence:
a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j;
a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

A132354 Integers m such that 7*m + 1 is a square.

Original entry on oeis.org

0, 5, 9, 24, 32, 57, 69, 104, 120, 165, 185, 240, 264, 329, 357, 432, 464, 549, 585, 680, 720, 825, 869, 984, 1032, 1157, 1209, 1344, 1400, 1545, 1605, 1760, 1824, 1989, 2057, 2232, 2304, 2489, 2565, 2760, 2840, 3045, 3129, 3344, 3432, 3657, 3749, 3984, 4080
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

Numbers of the form m*(7*m + 2) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Crossrefs

Programs

Formula

a(2*k) = k*(7*k + 2), a(2*k + 1) = 7*k^2 + 12*k + 5.
a(n) = n^2 + n + 3*ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
G.f.: -x*(5*x^2 + 4*x + 5)/((x - 1)^3*(x + 1)^2). - Colin Barker, Oct 24 2012
Sum_{n>=1} 1/a(n) = 7/4 - cot(2*Pi/7)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009
Better definition from Max Alekseyev, Oct 24 2012

A156701 a(n) = 4*n^4 + 17*n^2 + 4.

Original entry on oeis.org

4, 25, 136, 481, 1300, 2929, 5800, 10441, 17476, 27625, 41704, 60625, 85396, 117121, 157000, 206329, 266500, 339001, 425416, 527425, 646804, 785425, 945256, 1128361, 1336900, 1573129, 1839400, 2138161, 2471956, 2843425, 3255304, 3710425
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 13 2009

Keywords

Comments

a(n) = A087475(n)*A053755(n).

Crossrefs

Programs

  • Magma
    [4*n^4+17*n^2+4: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Mathematica
    Table[4n^4+17n^2+4,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{4,25,136,481,1300},50] (* Harvey P. Dale, Nov 08 2017 *)
  • PARI
    a(n)=4*n^4+17*n^2+4 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = (2*(n^2 - 1))^2 + (5*n)^2.
G.f.: (-4-25*x^4-11*x^3-51*x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
E.g.f.: exp(x)*(4 + 21*x + 45*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Jul 08 2023
Previous Showing 21-30 of 40 results. Next