cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A181718 a(n) = (1/9)*(10^(2*n) + 10^n - 2).

Original entry on oeis.org

0, 12, 1122, 111222, 11112222, 1111122222, 111111222222, 11111112222222, 1111111122222222, 111111111222222222, 11111111112222222222, 1111111111122222222222, 111111111111222222222222, 11111111111112222222222222, 1111111111111122222222222222
Offset: 0

Views

Author

Paul Curtz, Nov 17 2010

Keywords

Comments

In decimal, n times 1 followed by n times 2.
a(n) = 3 + 3*3, 33 + 33*33, 333 + 333*333, written with 3,6,9,12,... = A008585(n+1) 3's.

Crossrefs

Programs

  • Magma
    [(1/9)*(10^(2*n) + 10^n - 2): n in [0..20]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{0,12,1122},20] (* Harvey P. Dale, Jul 31 2013 *)
  • PARI
    vector(30, n, n--; (10^(2*n) + 10^n - 2)/9) \\ G. C. Greubel, Nov 02 2018
    
  • Python
    for n in range(30):
        print((10**(2*n)+10**n-2)//9, end=', ')
    # Stefano Spezia, Nov 02 2018
    
  • SageMath
    [(100^n +10^n -2)//9 for n in range(31)] # G. C. Greubel, Mar 25 2024

Formula

a(n) = A002277(n)*A093137(n).
G.f.: 6*x*(2-35*x) / ( (1-x)*(1-10*x)*(1-100*x) ). - R. J. Mathar, Feb 28 2011
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3), a(0)=0, a(1)=12, a(2)=1122. - Harvey P. Dale, Jul 31 2013
a(n) = (A074992(n) - 1)/3. - Michel Marcus, Sep 14 2013
E.g.f.: (1/9)*(-2*exp(x) + exp(10*x) + exp(100*x)). - G. C. Greubel, Mar 25 2024

A322570 Positive integers k such that A270710(k) (= (k+1)*(3*k-1)) have only 1 or 2 different digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 12, 16, 17, 33, 34, 48, 54, 285, 333, 334, 365, 385, 430, 471, 516, 816, 1049, 3333, 3334, 33333, 33334, 333333, 333334, 483048, 3333333, 3333334, 33333333, 33333334, 333333333, 333333334, 3333333333, 3333333334, 33333333333, 33333333334
Offset: 1

Views

Author

Seiichi Manyama, Aug 29 2019

Keywords

Crossrefs

Cf. A002277, A016069, A093137, A213517 (in case of triangular numbers), A270710, A322571.

Programs

  • Magma
    [k:k in [1..10000000]| #Set(Intseq((k+1)*(3*k-1))) le 2]; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    Select[Range@ 50000, Length@ Union@ IntegerDigits[3 #^2 + 2 # - 1] <= 2 &] (* Giovanni Resta, Sep 04 2019 *)
  • PARI
    for(k=1, 1e8, if(#Set(digits(3*k^2+2*k-1))<=2, print1(k", ")))
    

Formula

For k > 0, A002277(k) is a term.
For k >= 0, A002277(k) + 1 (= A093137(k)) is a term.

Extensions

a(35)-a(36) from Jinyuan Wang, Aug 30 2019
a(37)-a(40) from Giovanni Resta, Sep 04 2019

A323639 a(n) = 3*(10^n - 4)/9.

Original entry on oeis.org

-1, 2, 32, 332, 3332, 33332, 333332, 3333332, 33333332, 333333332, 3333333332, 33333333332, 333333333332, 3333333333332, 33333333333332, 333333333333332, 3333333333333332, 33333333333333332, 333333333333333332, 3333333333333333332, 33333333333333333332
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2019

Keywords

Examples

			        (0+1) * (3*0-1) = -1.
        (3+1) * (3*3-1) = 32.
      (33+1) * (3*33-1) = 3332.
    (333+1) * (3*333-1) = 333332.
  (3333+1) * (3*3333-1) = 33333332.
(33333+1) * (3*33333-1) = 3333333332.
-------------------------------------
        8 * 4 = 32.
      68 * 49 = 3332.
    668 * 499 = 333332.
  6668 * 4999 = 33333332.
66668 * 49999 = 3333333332.
		

Crossrefs

Programs

  • Mathematica
    Table[(10^n-4)/3,{n,0,20}] (* or *) LinearRecurrence[{11,-10},{-1,2},21] (* Harvey P. Dale, Jan 09 2021 *)
  • PARI
    {a(n) = 3*(10^n-4)/9}
    
  • PARI
    N=40; x='x+O('x^N); Vec((-1+13*x)/((1-x)*(1-10*x)))

Formula

G.f.: (-1+13*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
a(n) = A002277(n) - 1.
a(n) = 2*A246057(n-1) for n > 0.
a(2*n) = (A002277(n)+1) * (3*A002277(n)-1).
a(2*n) = A073555(n+1) * A198971(n-1) for n > 0.
E.g.f.: exp(x)*(exp(9*x) - 4)/3. - Stefano Spezia, May 02 2025
a(n) = A086948(n)/6 for n >= 1. - Elmo R. Oliveira, May 06 2025

A254398 Final digits of A237424 in decimal representation.

Original entry on oeis.org

1, 4, 7, 4, 7, 7, 4, 7, 7, 7, 4, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2015

Keywords

Comments

a(n) = A237424(n) mod 10;
n with a(n) = 4: A237424(n) = (10^a+10^b+1)/3 with b = 0, see also A093137, A133384;
n with a(n) = 7: A237424(n) = (10^a+10^b+1)/3 with 0 < b <= a;
length of k-th run of consecutive 7s = k;
digits 0, 2, 3, 5, 6, 8 and 9 do not occur.

Crossrefs

Programs

  • Haskell
    a254398 = flip mod 10 . a237424

A308900 An explicit example of an infinite sequence with a(1)=1 and, for n >= 2, a(n) and S(n) = Sum_{i=1..n} a(i) have no digit in common.

Original entry on oeis.org

1, 6, 4, 66, 34, 666, 334, 6666, 3334, 66666, 33334, 666666, 333334, 6666666, 3333334, 66666666, 33333334, 666666666, 333333334, 6666666666, 3333333334, 66666666666, 33333333334, 666666666666, 333333333334, 6666666666666, 3333333333334, 66666666666666, 33333333333334
Offset: 1

Views

Author

N. J. A. Sloane, Jul 15 2019

Keywords

Comments

Used in a proof that the initial terms of A309151 are correct.
The S(n) sequence is 1, 7, 11, 77, 111, 777, 1111, 7777, 11111, 77777, ...
A093137 interleaved with positive terms of A002280. - Felix Fröhlich, Jul 15 2019

Crossrefs

Programs

  • Magma
    I:=[1,6,4]; [n le 3 select I[n] else - Self(n-1) + 10*Self(n-2) + 10*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 20 2019
  • Maple
    1, seq(op([6*(10^i-1)/9, 3*(10^i-1)/9+1]), i=1..30); # Robert Israel, Jul 15 2019
  • Mathematica
    CoefficientList[Series[(1 + 7 x)/((1 + x) (1 - 10 x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Jul 18 2019 *)
    LinearRecurrence[{-1,10,10},{1,6,4},30] (* Harvey P. Dale, Jan 02 2022 *)
  • PARI
    Vec((1+7*x)/((1+x)*(1-10*x^2)) + O(x^20)) \\ Felix Fröhlich, Jul 15 2019
    
  • PARI
    a(n) = if(n==1, 1, if(n%2==0, 6*(10^(n/2)-1)/9, 3*(10^((n-1)/2)-1)/9+1)) \\ Felix Fröhlich, Jul 15 2019
    

Formula

For even n >= 2, a(n) = 6666...66 (with n/2 6's). For odd n >= 5, a(n) = 3333...334 (with (n-3)/2 3's and a single 4).
From Robert Israel, Jul 15 2019: (Start)
G.f. (1+7*x)/((1+x)*(1-10*x^2)).
a(n) = -a(n - 1) + 10*a(n - 2) + 10*a(n - 3). (End)
a(-n) = a(n+1). - Paul Curtz, Jul 18 2019
a(n) = (1/60)*(-40*(-1)^n + (1 + (-1)^n)*(2^(2+n/2)*5^(1+n/2)) + (1 + (-1)^(n+1))*10^((1+n)/2)). - Stefano Spezia, Jul 20 2019

A374258 Square array: T(n,k) = ((3^(n+1) + 1)^(k-1) + 2)/3, read by descending antidiagonals.

Original entry on oeis.org

1, 4, 1, 34, 10, 1, 334, 262, 28, 1, 3334, 7318, 2242, 82, 1, 33334, 204886, 183790, 19846, 244, 1, 333334, 5736790, 15070726, 4842262, 177634, 730, 1, 3333334, 160630102, 1235799478, 1181511766, 129672334, 1595782, 2188, 1, 33333334, 4497642838, 101335557142, 288288870742, 94660803334, 3491569558, 14353282, 6562, 1
Offset: 1

Views

Author

Ahmad J. Masad, Jul 01 2024

Keywords

Comments

This sequence gives the matrix M in the definition of A365450. Similar to A266577.
Conjecture: For each natural number n, the digits of the product of any (n+1) not necessarily distinct terms of the n-th row in the base (3^(n+1)+1) numeral system appear in nondecreasing order.
Proof of the conjecture. Let b := 3^(n+1)+1. The product of any (n+1) terms of the n-th row has the form p/(b-1), where p is the product of (n+1) numbers of the form b^k+2. Let p = (dm, ..., d1, d0)b, and we have d0+d1+...+dm = 3^(n+1) = b-1. Then p/(b-1) = (dm, ..., d2+...+dm, 1+d1+...+dm)_b, which do form a nondecreasing sequence. - _Max Alekseyev, Jul 03 2024
The preceding result is similar to the property of the nondecreasing products mentioned in A237424. Specifically; the first row of this array is A093137, which is a subsequence of A237424. - Ahmad J. Masad, Jul 30 2024
More generally: Let r and n be positive integers and S be a sequence of all numbers of the form (b^c(1)+b^c(2)+...+b^c(r)+1)/(r+1), where c(1),...,c(r) are nonnegative integers. Then in the numeral system base b := (r+1)^(n+1)+1, the digits of the product of any n+1 (possibly equal) terms of S appear in nondecreasing order. Proof is similar. - Ahmad J. Masad, Jul 30 2024; edited by Max Alekseyev, Aug 01 2024

Examples

			The array begins:
  1    4    34   334   3334
  1   10   262  7318
  1   28  2242
  1   82
  1
Example of the conjecture: Take 5 terms from the 4th row and find their product in base 244 numeral system (since 3^(4+1)+1=244) as follows: 82,19846 twice and 4842262 twice, the product is equal to 82*19846*19846*4842262*4842262 = 757279838666167487626528 = (1, 3, 7, 19, 31, 55, 91, 115, 163, 195, 212)_244 which is in agreement with the conjecture since the digits in 244 base numeral system are in nondecreasing order.
Example of the general property: Take r=3 and n=4, then b=4^5+1=1025. The sequence S is the sequence of the numbers of the form (1025^b(1)+1025^b(2)+1025^b(3)+1)/4. Let's multiply 5 terms of the sequence S, say ((1025^0+1025^0+1025^1+1)/4)*(((1025^0+1025^1+1025^1+1)/4)^2)*(((1025^3+1025^4+1025^4+1)/4)^2) = 257*513^2*552175667969^2 = 20621601208620337073958261562113 = (16,112,308,488,580,680,832,936,964,984,1013)_1025. The digits of the product in base 1025 are in nondecreasing order.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := ((3^(n+1) + 1)^(k-1) + 2)/3; Table[T[k, n-k+1], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 02 2024 *)
  • PARI
    T(n,k) = ((3^(n+1) + 1)^(k-1) + 2)/3 \\ Andrew Howroyd, Jul 01 2024

A274986 Numbers k such that (10^k + 23)/3 is prime.

Original entry on oeis.org

1, 2, 6, 146, 326, 380, 1116, 1866, 4808, 5528, 5730, 21836, 24804, 38724
Offset: 1

Views

Author

Vincenzo Librandi, Sep 25 2016

Keywords

Comments

Also numbers k for which A093137(k) + 7 or A002277(k) + 8 is prime.

Crossrefs

Cf. numbers k such that (10^k+m)/3 is prime: A099411 (m=11), this sequence (m=23).

Programs

  • Magma
    [n: n in [0..400] | IsPrime((10^n+23) div 3)];
    
  • Mathematica
    Select[Range[1000], PrimeQ[(10^# + 23) / 3] &]
  • PARI
    is(n)=ispseudoprime((10^n+23)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(9)-a(11) from Michael S. Branicky, Aug 16 2021
a(12)-a(13) from Michael S. Branicky, May 14 2023
a(14) from Kamada data by Tyler Busby, May 05 2024
Previous Showing 11-17 of 17 results.