cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 77 results. Next

A206351 a(n) = 7*a(n-1) - a(n-2) - 4 with a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 16, 105, 715, 4896, 33553, 229971, 1576240, 10803705, 74049691, 507544128, 3478759201, 23843770275, 163427632720, 1120149658761, 7677619978603, 52623190191456, 360684711361585, 2472169789339635
Offset: 1

Views

Author

James R. Buddenhagen, Feb 06 2012

Keywords

Comments

A Pell sequence related to Heronian triangles (rational triangles), see A206334. The connection is this: consider the problem of finding triangles with area a positive integer n, and with sides (a, b, n) where a, b are rational. Note that n is both the area and one side. For many values of n this is not possible, and the sequence of such numbers n is quite erratic (see A206334). Nonetheless, each term in this sequence is such a value of n. For example, for n = 105 you can take the other two sides, a and b, to be 10817/104, and 233/104 and the area will equal n, i.e., 105.

Examples

			G.f. = x + 3*x^2 + 16*x^3 + 105*x^4 + 715*x^5 + 4896*x^6 + 33553*x^7 + ... - _Michael Somos_, Jun 26 2018
		

Crossrefs

Subsequence of A206334.

Programs

  • Haskell
    a206351 n = a206351_list !! (n-1)
    a206351_list = 1 : 3 : map (subtract 4)
                   (zipWith (-) (map (* 7) (tail a206351_list)) a206351_list)
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Magma
    [Fibonacci(2*n)*Fibonacci(2*n-3): n in [1..30]]; // G. C. Greubel, Aug 12 2018
  • Maple
    genZ := proc(n)
    local start;
    option remember;
        start := [1, 3];
        if n < 3 then start[n]
        else 7*genZ(n - 1) - genZ(n - 2) - 4
        end if
    end proc:
    seq(genZ(n),n=1..20);
  • Mathematica
    LinearRecurrence[{8, -8, 1}, {1, 3, 16}, 50] (* Charles R Greathouse IV, Feb 07 2012 *)
    RecurrenceTable[{a[1] == 1, a[2] == 3, a[n] == 7 a[n - 1] - a[n - 2] - 4}, a, {n, 20}] (* Bruno Berselli, Feb 07 2012 *)
    a[ n_] := Fibonacci[2 n] Fibonacci[2 n - 3]; (* Michael Somos, Jun 26 2018 *)
    nxt[{a_,b_}]:={b,7b-a-4}; NestList[nxt,{1,3},20][[;;,1]] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    Vec((1-5*x)/(1-8*x+8*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Feb 07 2012
    
  • PARI
    {a(n) = fibonacci(2*n) * fibonacci(2*n - 3)}; /* Michael Somos, Jun 26 2018 */
    

Formula

From Bruno Berselli, Feb 07 2012: (Start)
G.f.: x*(1-5*x)/(1-8*x+8*x^2-x^3).
a(n) = A081018(n-1) + 1. (End)
a(n) = -A003482(-n) = Fibonacci(2*n)*Fibonacci(2*n-3). - Michael Somos, Jun 26 2018
a(n) = A089508(n-1) + 2 for n>1. - Bruno Berselli, Jun 20 2019 [Formula found by Umberto Cerruti]
Product_{n>=2} (1 - 1/a(n)) = 1/phi (A094214) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
a(n) = (Fibonacci(2*n-2) + 1/Lucas(2*n-2))*(Fibonacci(2*n-1) + 1/Lucas(2*n-1)). - Peter Bala, Sep 03 2022

A272534 Decimal expansion of the edge length of a regular 15-gon with unit circumradius.

Original entry on oeis.org

4, 1, 5, 8, 2, 3, 3, 8, 1, 6, 3, 5, 5, 1, 8, 6, 7, 4, 2, 0, 3, 4, 8, 4, 5, 6, 8, 8, 1, 0, 2, 5, 0, 3, 3, 2, 4, 3, 3, 1, 6, 9, 5, 2, 1, 2, 5, 5, 4, 4, 7, 6, 7, 2, 8, 1, 4, 3, 6, 3, 9, 4, 7, 7, 6, 4, 7, 6, 5, 6, 5, 1, 3, 2, 8, 1, 4, 8, 7, 5, 2, 6, 0, 9, 2, 5, 7, 5, 1, 3, 4, 4, 5, 4, 5, 5, 1, 4, 6, 1, 1, 5, 7, 3, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

15-gon is the first m-gon with odd composite m which is constructible (see A003401) in virtue of the fact that 15 is the product of two distinct Fermat primes (A019434). The next such case is 51-gon (m=3*17), followed by 85-gon (m=5*17), 771-gon (m=3*257), etc.
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 4, pp. 69-74. See also the comments in A302711 with a link to Romanus' book, Exemplum quaesitum.
This problem is equivalent to R(45, 2*sin(Pi/675)) = 2*sin(Pi/15), with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/675) see A302716. (End)

Examples

			0.415823381635518674203484568810250332433169521255447672814363947...
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272535 (16), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/15], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/15)

Formula

Equals 2*sin(Pi/m) for m=15, 2*A019821.
Also equals (sqrt(3) - sqrt(15) + sqrt(10 + 2*sqrt(5)))/4.
Also equals sqrt(7 - sqrt(5) - sqrt(30 - 6*sqrt(5)))/2. This is the rewritten expression of the Havil reference on top of p. 70. - Wolfdieter Lang, Apr 29 2018

A139345 Decimal expansion of sine of the golden ratio. That is, the decimal expansion of sin((1+sqrt(5))/2).

Original entry on oeis.org

9, 9, 8, 8, 8, 4, 5, 0, 9, 0, 9, 4, 8, 8, 4, 7, 9, 8, 8, 3, 3, 2, 6, 8, 2, 4, 2, 6, 3, 0, 1, 2, 9, 0, 4, 4, 6, 3, 8, 6, 5, 1, 1, 9, 2, 1, 2, 7, 0, 5, 7, 4, 4, 3, 4, 5, 5, 3, 9, 9, 6, 6, 8, 8, 1, 0, 7, 1, 8, 2, 3, 9, 1, 8, 2, 7, 9, 9, 5, 4, 0, 9, 2, 6, 6, 8, 5, 3, 3, 6, 0, 4, 0, 4, 4, 6, 0, 2, 7, 1, 8, 5, 2, 1
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.99888450909488479883326824263012904463865119212705...
		

Crossrefs

Programs

Formula

Equals sin(A001622).
Equals 1/A139350. - Amiram Eldar, Feb 07 2022

Extensions

Leading zero removed by R. J. Mathar, Feb 05 2009

A035339 5th column of Wythoff array.

Original entry on oeis.org

8, 29, 42, 63, 84, 97, 118, 131, 152, 173, 186, 207, 228, 241, 262, 275, 296, 317, 330, 351, 364, 385, 406, 419, 440, 461, 474, 495, 508, 529, 550, 563, 584, 605, 618, 639, 652, 673, 694, 707, 728, 741, 762, 783, 796, 817, 838, 851, 872, 885, 906, 927, 940, 961
Offset: 0

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025

Crossrefs

Column k of A035513: A003622 (k=1), A035336 (k=2), A035337 (k=3), A035338 (k=4), this sequence (k=5), A035340 (k=6).
Cf. A094214.

Programs

  • Maple
    t:= (1+sqrt(5))/2: [ seq(8*floor((n+1)*t)+5*n,n=0..80) ];
  • Mathematica
    a[n_] := 8 * Floor[n * GoldenRatio] + 5*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)

A035340 6th column of Wythoff array.

Original entry on oeis.org

13, 47, 68, 102, 136, 157, 191, 212, 246, 280, 301, 335, 369, 390, 424, 445, 479, 513, 534, 568, 589, 623, 657, 678, 712, 746, 767, 801, 822, 856, 890, 911, 945, 979, 1000, 1034, 1055, 1089, 1123, 1144, 1178, 1199, 1233, 1267, 1288, 1322, 1356, 1377, 1411, 1432
Offset: 0

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1/phi^7 = A094214^7 = 0.03444185... . - Amiram Eldar, Mar 24 2025

Crossrefs

Column k of A035513: A003622 (k=1), A035336 (k=2), A035337 (k=3), A035338 (k=4), A035339 (k=5), this sequence (k=6).
Cf. A094214.

Programs

  • Maple
    t:= (1+sqrt(5))/2: [ seq(13*floor((n+1)*t)+8*n,n=0..80) ];
  • Mathematica
    a[n_] := 13 * Floor[n * GoldenRatio] + 8*(n-1); Array[a, 100] (* Amiram Eldar, Mar 24 2025 *)

A101642 a(n) = Knuth's Fibonacci (or circle) product "3 o n".

Original entry on oeis.org

8, 13, 21, 29, 34, 42, 47, 55, 63, 68, 76, 84, 89, 97, 102, 110, 118, 123, 131, 136, 144, 152, 157, 165, 173, 178, 186, 191, 199, 207, 212, 220, 228, 233, 241, 246, 254, 262, 267, 275, 280, 288, 296, 301, 309, 317, 322, 330, 335, 343, 351, 356, 364, 369, 377
Offset: 1

Views

Author

N. J. A. Sloane, Jan 26 2005

Keywords

Comments

Let phi be the golden ratio. Using Fred Lunnon's formula in A101330 for Knuth's circle product, and the fact that phi^{-2} = 2-phi, plus [-x] = -[x]-1 for non-integer x, one obtains the formula below, expressing this sequence in terms of the lower Wythoff sequence. It follows in particular that the sequence of first differences 5,8,8,5,8,5,8,8,5,8,... of this sequence is the Fibonacci word A003849 on the alphabet {8,5}, shifted by 1. - Michel Dekking, Dec 23 2019
Also numbers with suffix string 0000, when written in Zeckendorf representation. - A.H.M. Smeets, Mar 20 2024
The asymptotic density of this sequence is 1/phi^4 = A094214^4 = 0.145898... . - Amiram Eldar, Mar 24 2025

Crossrefs

Third row of array in A101330.
Cf. A101345 = Knuth's Fibonacci (or circle) product "2 o n".

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; kfp[n_, m_] := Block[{y = Reverse[ IntegerDigits[ zeck[ n]]], z = Reverse[ IntegerDigits[ zeck[ m]]]}, Sum[ y[[i]]*z[[j]]*Fibonacci[i + j + 2], {i, Length[z1]}, {j, Length[z2]}]]; (* Robert G. Wilson v, Feb 04 2005 *)
    Table[ kfp[3, n], {n, 50}] (* Robert G. Wilson v, Feb 04 2005 *)
    Array[3*Floor[(# + 1)*GoldenRatio] + 2*# - 3 &, 100] (* Paolo Xausa, Mar 23 2024 *)
  • Python
    from math import isqrt
    def A101642(n): return 3*(n+1+isqrt(5*(n+1)**2)>>1)+(n<<1)-3 # Chai Wah Wu, Aug 29 2022

Formula

From Michel Dekking, Dec 23 2019: (Start)
a(n) = 3*A000201(n+1) + 2n - 3.
a(n) = A101345(n) + A000201(n+1) + n + 1. (End)

Extensions

More terms from David Applegate, Jan 26 2005
More terms from Robert G. Wilson v, Feb 04 2005

A139346 Decimal expansion of cosine of the golden ratio, negated. That is, the decimal expansion of -cos((1+sqrt(5))/2).

Original entry on oeis.org

0, 4, 7, 2, 2, 0, 0, 9, 6, 2, 5, 4, 3, 5, 9, 8, 3, 3, 7, 6, 6, 8, 7, 8, 6, 9, 4, 0, 4, 8, 7, 9, 4, 5, 6, 5, 4, 9, 5, 5, 4, 8, 9, 9, 4, 7, 2, 7, 3, 4, 2, 7, 8, 1, 3, 2, 8, 1, 8, 2, 1, 9, 8, 2, 7, 8, 3, 5, 3, 3, 0, 1, 1, 6, 7, 0, 6, 3, 5, 9, 5, 5, 6, 3, 6, 8, 1, 2, 3, 8, 9, 8, 2, 3, 3, 2, 2, 6, 0, 5, 3, 2, 2, 8
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 15 2008

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			-0.04722009625435983376687869404879456549554899472734...
		

Crossrefs

Programs

Formula

Equals 1/A139349. - Amiram Eldar, Feb 07 2022

Extensions

Edited by N. J. A. Sloane, Dec 11 2008

A144749 Decimal expansion of the golden ratio powered to itself.

Original entry on oeis.org

2, 1, 7, 8, 4, 5, 7, 5, 6, 7, 9, 3, 7, 5, 9, 9, 1, 4, 7, 3, 7, 2, 5, 4, 5, 7, 0, 2, 8, 7, 1, 2, 4, 5, 8, 5, 1, 8, 0, 7, 0, 4, 3, 3, 0, 1, 6, 9, 3, 2, 5, 4, 6, 1, 1, 3, 4, 7, 7, 8, 1, 9, 2, 4, 0, 4, 7, 4, 4, 0, 4, 4, 9, 5, 3, 2, 8, 2, 6, 2, 0, 2, 1, 0, 7, 0, 1, 6, 7, 6, 1, 1, 9, 7, 6, 7, 0, 5, 8, 7, 6, 5, 4, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Sep 20 2008

Keywords

Comments

See A092134 for the continued fraction of this value, phi^phi, where phi = (sqrt(5)+1)/2 = A001622. - M. F. Hasler, Oct 08 2014

Examples

			Equals 2.178457567937599147372545702871245851807043301693254611347781924...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[GoldenRatio^GoldenRatio,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    (t=(sqrt(5)+1)/2)^t \\ Use \p99 to get 99 digits; digits(%\.1^99) for the sequence of digits. - M. F. Hasler, Oct 08 2014
    
  • SageMath
    numerical_approx(golden_ratio^golden_ratio, digits=120) # G. C. Greubel, Jun 16 2022

Formula

A175288 Decimal expansion of the minimal positive constant x satisfying (cos(x))^2 = sin(x).

Original entry on oeis.org

6, 6, 6, 2, 3, 9, 4, 3, 2, 4, 9, 2, 5, 1, 5, 2, 5, 5, 1, 0, 4, 0, 0, 4, 8, 9, 5, 9, 7, 7, 7, 9, 2, 7, 2, 0, 6, 6, 7, 4, 9, 0, 1, 3, 8, 7, 2, 5, 9, 4, 7, 8, 4, 2, 8, 3, 1, 4, 7, 3, 8, 4, 2, 8, 0, 3, 9, 7, 8, 9, 8, 9, 3, 7, 9, 0, 5, 9, 2, 8, 1, 7, 0, 7, 9, 0, 6, 8, 3, 1, 1, 6, 9, 5, 8, 1, 1, 3, 5, 2, 5, 9, 7, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2010, Mar 29 2010

Keywords

Comments

This is the angle (in radians) at which the modified loop curve x^4=x^2*y-y^2 returns to the origin. Writing the curve in (r,phi) circular coordinates, r = sin(phi) * (cos^2(phi)-sin(phi)) /cos^4(phi), the two values of r=0 are phi=0 and the value of phi defined here. The equivalent angle of the Bow curve is Pi/4.
Also the minimum positive solution to tan(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014

Examples

			x = 0.66623943.. = 38.1727076... degrees.
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcSin[r], 100]
    RealDigits[%]  (* A175288 *)
    RealDigits[x/.FindRoot[Cos[x]^2==Sin[x],{x,.6}, WorkingPrecision->120]] [[1]] (* Harvey P. Dale, Nov 08 2011 *)
    RealDigits[ ArcCos[ Sqrt[ (Sqrt[5] - 1)/2]], 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)

Formula

x = arcsin(A094214). cos(x)^2 = sin(x) = 0.618033988... = A094214.
From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A195692.
Equals arccos(1/sqrt(phi)).
Equals arctan(1/sqrt(phi)) = arccot(sqrt(phi)). (End)
Root of the equation cos(x) = tan(x). - Vaclav Kotesovec, Mar 06 2022

Extensions

Disambiguated the curve here from the Mathworld bow curve - R. J. Mathar, Mar 29 2010

A298271 Expansion of x/((1 - x)*(1 - 322*x + x^2)).

Original entry on oeis.org

0, 1, 323, 104006, 33489610, 10783550415, 3472269744021, 1118060074024348, 360011871566096036, 115922704584208899245, 37326750864243699460855, 12019097855581887017496066, 3870112182746503375934272398, 1246164103746518505163818216091
Offset: 0

Views

Author

Bruno Berselli, Jan 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[x/((1 - x) (1 - 322 x + x^2)) + O[x]^20, x]
  • Maxima
    makelist(coeff(taylor(x/((1-x)*(1-322*x+x^2)), x, 0, n), x, n), n, 0, 20);
    
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-323,323]^n*[0;1;323])[1,1] \\ Charles R Greathouse IV, Jan 18 2018
    
  • PARI
    concat(0, Vec(x / ((1 - x)*(1 - 322*x + x^2)) + O(x^15))) \\ Colin Barker, Jan 19 2018
  • Sage
    gf = x/((1-x)*(1-322*x+x^2))
    print(taylor(gf, x, 0, 20).list())
    

Formula

G.f.: x/((1 - x)*(1 - 322*x + x^2)).
a(n) = a(-n-1) = 323*a(n-1) - 323*a(n-2) + a(n-3).
a(n) = (1/5760)*((2 + sqrt(5))^(4*n+2) + (2 + sqrt(5))^-(4*n+2) - 18).
a(n) = A298101(n) - A298101(n-1) + A298101(n-2) - A298101(n-3) + ..., hence:
a(n) + a(n-1) = A298101(n).
a(n) - a(n-1) = (1/144)*Fibonacci(12*n).
a(n) - a(n-2) = (1/8)*Fibonacci(12*n-6).
a(n)*a(n-2) = a(n-1)*(a(n-1) - 1).
Sum_{j>1} 1/a(j) = 161 - 72*sqrt(5) = A094214^12.
a(n) = A157459(n+1)/72. - Greg Dresden, Dec 02 2021
Previous Showing 31-40 of 77 results. Next