cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 62 results. Next

A193290 E.g.f. satisfies: A(x) = 1/(1 - x*A(x))^(1 + 1/A(x)).

Original entry on oeis.org

1, 2, 10, 96, 1388, 26960, 659352, 19471984, 674425600, 26814697056, 1203912012000, 60251644584384, 3326134996826688, 200792710948417536, 13159474030202943744, 930524202271542658560, 70616227020854238216192, 5724780985202503068533760
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2011

Keywords

Comments

More generally, we have the identity:
Sum_{n>=0} (x^n/n!)*Product_{k=1..n} (1+k*y) = 1/(1 - x*y)^(1 + 1/y); here y=A(x).

Examples

			E.g.f.: A(x) = 1 + 2*x + 10*x^2/2! + 96*x^3/3! + 1388*x^4/4! + 26960*x^5/5! +...
where e.g.f. A = A(x) satisfies:
A = 1 + x*(1+A) + x^2*(1+A)*(1+2*A)/2! + x^3*(1+A)*(1+2*A)*(1+3*A)/3! + x^4*(1+A)*(1+2*A)*(1+3*A)*(1+4*A)/4! + x^5*(1+A)*(1+2*A)*(1+3*A)*(1+4*A)*(1+5*A)/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/(1-x*A +x*O(x^n))^(1+1/A));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m/m!*prod(k=1,m,1+k*A+x*O(x^n))));n!*polcoeff(A,n)}

Formula

E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (1 + k*A(x)).
a(n) ~ s*sqrt(r*(1+s)*(r*s-1)/(1-4*r*s+r^2*s*(2*s-1))) * n^(n-1) / (exp(n) * r^n), where s = 2.4590533113276368838... is the root of the equation (1+s)*(1+2*s) = s^(s/(1+s))*(1+s)^2 - s*log(s) and r = (1 - s^(-s/(1+s)))/s = 0.1921573821382919835... - Vaclav Kotesovec, Jan 11 2014

A196841 Table of the elementary symmetric functions a_k(1,3,4,...,n+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 19, 12, 1, 13, 59, 107, 60, 1, 19, 137, 461, 702, 360, 1, 26, 270, 1420, 3929, 5274, 2520, 1, 34, 478, 3580, 15289, 36706, 44712, 20160, 1, 43, 784, 7882, 47509, 174307, 375066, 422568, 181440, 1, 53, 1214, 15722, 126329, 649397
Offset: 0

Views

Author

Wolfdieter Lang, Oct 24 2011

Keywords

Comments

The elementary symmetric functions are defined by product(1-x[j]*x,j=1..n)=: sum((-1)^k*a_k(x[1],x[2],...,x[n])*x^k ,k=0..n), n>=1. Here x[1]=1 and x[j]=j+1 for j=2,..,n.
This triangle is the row reversed version of |A123319|.
In general, the triangle S_j(n,k), lists for n>=j the elementary symmetric functions
a_k(1,2,...,j-1,j+1,...,n+1), k=0..n. For 0<=n
For j=0 one takes a_0(n,k) = a_k(1,2,...,n) which is A094638(n+1,k+1). a_1(n,k)=a_k(2,3,....,n+1)= A145324(n+1,k+1). The present triangle a(n,k) equals S_2(n,k).
The first j rows of the triangle S_j(n,k) coincide with the ones of triangle A094638.
The following rows (n>=j) of S_j(n,k) are given by
sum((-j)^m*|s(n+2,n+2-k+m)|,m=0..k), with the Stirling numbers of the first kind s(n,m) = A048994(n,m). The proof is done by iterating the obvious recurrence S_j(l,m) = a_m(1,2,...,l+1) - j*S_j(l,m-1), using a_k(1,2,...,n) = |s(n+1,n+1-m)|, For a proof of the last equation see, e.g., the Stanley reference, p. 19, Second Proof.

Examples

			n\k  0   1   2    3     4      5      6      7  ...
0:   1
1:   1   1
2:   1   4   3
3:   1   8  19   12
4:   1  13  59  107    60
5:   1  19 137  461   702    360
6:   1  26 270 1420  3929   5274   2520
7:   1  34 478 3580 15289  36706  44712  20160
...
a(3,2) = 1*3+1*4+3*4 = 19.
a(3,2) = |s(5,3)| - 2*|s(5,4)| + 4*|s(5,5)| = 35-2*10+4*1 = 19.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997.

Crossrefs

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<2, and a_k(1,3,4,...,n+1) if n>=2, for k=0..n, with the elementary symmetric functions a_k defined above in a comment.
a(n,k) = 0 if n
= sum((-2)^m*|s(n+2,n+2-k+m)|,m=0..k) if n>=2, with the Stirling numbers of the first kind s(n,m) = A048994(n,m).

A196842 Table of the elementary symmetric functions a_k(1,2,4,5,...,n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 8, 1, 12, 49, 78, 40, 1, 18, 121, 372, 508, 240, 1, 25, 247, 1219, 3112, 3796, 1680, 1, 33, 447, 3195, 12864, 28692, 32048, 13440, 1, 42, 744, 7218, 41619, 144468, 290276, 301872, 120960, 1, 52, 1164, 14658, 113799, 560658, 1734956, 3204632, 3139680, 1209600
Offset: 0

Author

Wolfdieter Lang, Oct 24 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x[1]=1, x[2]=2, and x[j]=j+1 for j=3,...,n. This is the triangle S_3(n,k), n>=0, k=0..n. The first three rows coincide with those of triangle A094638.

Examples

			n\k   0    1    2     3      4      5     6       7  ...
0:    1
1:    1    1
2:    1    3    2
3:    1    7   14     8
4:    1   12   49    78     40
5:    1   18  121   372    508    240
6:    1   25  247  1219   3112   3796   1680
7:    1   33  447  3195  12864  28692  32048  13440
...
a(1,0) = a_0(1):= 1, a(1,1) = a_1(1)= 1.
a(3,2) = a_2(1,2,4) = 1*2 + 1*4 + 2*4 = 14.
a(3,2) = 1*|s(5,3)| - 3*|s(5,4)| + 9*|s(5,5)| = 1*35-3*10+9*1 = 14.
		

Crossrefs

Cf. A094638, A145324,|A123319|, A196841, A055998 (column k=1), A002301 (diagonal), A277132 (subdiagonal).

Programs

  • Maple
    A196842 := proc(n,k)
        if n = 1 and k =1 then
            1 ;
        else
            add( abs( combinat[stirling1](n+2,n+2-k+m))*(-3)^m,m=0..k) ;
        end if;
    end proc: # R. J. Mathar, Oct 01 2016
  • Mathematica
    a[n_, k_] := If[n == 1 && k == 1, 1, Sum[(-3)^m Abs[StirlingS1[n + 2, n + 2 - k + m]], {m, 0, k}]];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2023, after R. J. Mathar *)

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<3, and a_k(1,2,4,5,...,n+1) if n>=3, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n=3, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).

A204248 Permanent of the n-th principal submatrix of A002024.

Original entry on oeis.org

1, 1, 7, 126, 4276, 234300, 18877020, 2100159600, 308417610816, 57786899446080, 13452134426136000, 3808606484711952000, 1288711254432792833280, 513583129024901529834240, 238093035025913233419052800, 127039392937347095305900800000, 77298350216325487808699492352000
Offset: 0

Author

Clark Kimberling, Jan 14 2012

Keywords

Comments

a(n) is permanent of Toeplitz matrix
n n-1 n-2 ... 3 2 1
n+1 n n-1 ... 4 3 2
n+2 n+1 n ... 5 4 3
.......
2n-1 2n-2 2n-3 ... n+2 n+1 n. - Vladimir Shevelev, Dec 01 2013

Examples

			From _Vladimir Shevelev_, Dec 01 2013: (Start)
a(3) = permanent ( 3 2 1 ) = 3*17 + 2*22 + 1*31 = 126.
                 ( 4 3 2 )
                 ( 5 4 3 )
and
a(3) = |stirling1(3,3)*stirling1(4,1)|*6*1 + |stirling1(3,2)*stirling1(4,2)|*2*1 + |stirling1(3,1)*stirling1(4,3)|*1*2 = 1*6*6*1 + 3*11*2*1 + 2*6*1*2 = 126. (End)
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := i + j - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]  (* A002024 *)
    Join[{1},Table[Permanent[m[n]], {n, 1, 15}]]  (* A204248 *)
  • PARI
    a(n) = (-1)^n * sum(k=0, n-1, stirling(n, n-k) * stirling(n+1, k+1) * (n-k)! * k! ) /* Max Alekseyev, Dec 02 2013 */
    
  • Python
    from math import factorial
    from sympy.functions.combinatorial.numbers import stirling
    def A204248(n): return sum(stirling(n,n-k,kind=1)*stirling(n+1,k+1,kind=1)*factorial(n-k)*factorial(k) for k in range(n)) if n else 1 # Chai Wah Wu, Oct 16 2022
    
  • Python
    from math import factorial, comb
    from sympy.functions.combinatorial.numbers import stirling
    def A204248(n): return factorial(n)*stirling(m:=(n<<1)+1,n+1,kind=1)//comb(m,n) # Chai Wah Wu, Jun 08 2025

Formula

a(n) = (-1)^n * Sum_{k=0..n} Stirling1(n,n-k) * Stirling1(n+1,k+1) * (n-k)! * k!. - Vladimir Shevelev, Dec 01 2013
Limit n->infinity a(n)^(1/n)/n^2 = -2*c^2/(exp(2)*(1+2*c)) = 0.33230326707622..., where c = LambertW(-1,-1/(2*exp(1/2))) = -1.756431208626... - Vaclav Kotesovec, Dec 10 2013
a(n) ~ 2.531082868731093... * (-2*c^2/(exp(2)*(1+2*c)))^n * n^(2*n+1/2), where c = LambertW(-1,-1/(2*exp(1/2))). - Vaclav Kotesovec, Dec 10 2013
a(n) = n!*abs(Stirling1(2*n+1,n+1))/C(2*n+1,n). - Chai Wah Wu, Jun 08 2025

Extensions

More terms from Max Alekseyev, Dec 02 2013
a(0)=1 prepended by Pontus von Brömssen, Jan 30 2021

A101751 Table (read by rows) giving the coefficients of sum formulas of n-th Factorials (A000142). The k-th row (k>=1, n>=2) contains T(i,k) for i=1 to k+1, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies Fact(n) = Sum_{i=1..k+1} T(i,k) * (n-1)^(k-i+1) / (2*k-2)!.

Original entry on oeis.org

1, 0, 1, 3, -6, 32, 264, -2024, 2400, 3420, 55800, -666540, 909720, 2570400, 90440, 13101144, 72406040, -3757930680, 13117344800, 72965762016, -261763004160
Offset: 1

Author

André F. Labossière, Dec 17 2004

Keywords

Examples

			Fact(8) = 5040; substituting n=8 in the formula of the k-th row we obtain k=4 and the coefficients
T(i,4) will be the following: 3420,55800,-666540,909720,2570400, => Fact(8) = [ 3420*7^4 +55800*7^3 -666540*7^2 +909720*7 +2570400 ]/6! = 7! =5040.
		

A121586 Number of columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

1, 1, 3, 13, 70, 446, 3276, 27252, 253296, 2602224, 29288160, 358457760, 4740577920, 67375532160, 1024208720640, 16583626886400, 284953145702400, 5178968115148800, 99268112350310400, 2001336861359001600, 42337994134947840000, 937755916997437440000
Offset: 0

Author

Emeric Deutsch, Aug 14 2006

Keywords

Comments

a(n) is also the largest entry in the cycle containing 1, summed over all permutations of {1,2,...,n}. Example: a(3) = 13 because the permutations (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), (132), written in cycle notation, yield 1+1+2+3+3+3=13. - Emeric Deutsch, Nov 10 2008

Examples

			a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 1 and 2 columns.
		

Crossrefs

Programs

  • Maple
    a[0] := 1; a[1] := 1: for n from 2 to 22 do a[n] := n*a[n-1] + (n-1)!*(n-1) od:
    seq(a[n], n = 0..22);
    # Second program:
    egf := (1 - (x - 1)*log(1 - x))/(x - 1)^2: ser := series(egf, x, 20):
    seq(n!*coeff(ser, x, n), n = 0..19); # Peter Luschny, Dec 09 2021
  • Mathematica
    Join[{1}, Table[CoefficientList[Series[((x-1)Log[1-x]-x-1)/(x-1)^3, {x, 0, 20}],x][[n]] (n-1)!, {n, 1, 20}]] (* Benedict W. J. Irwin, Sep 27 2016 *)

Formula

a(n) = (n+1)! - |s(n+1,2)|, where s(n,k) are the signed Stirling numbers of the first kind (A008275).
Recurrence relation: a(n) = n*a(n-1) + (n-1)!*(n-1); (see the Barcucci et al. reference, p. 34).
a(n) = Sum_{k=1..n} k*A094638(n,k).
From Emeric Deutsch, Nov 10 2008: (Start)
a(n) = (n-1)!*(n^2 + n - 1 - n*H(n-1)) for n >= 1, where H(j) = 1/1+1/2+...+1/j.
a(n) = Sum_{k=1..n} k*A145888(n,k) for n >= 1. (End)
From Gary Detlefs, Sep 12 2010: (Start)
a(n) = n!*((n+1) - h(n)), where h(n) = Sum_{k=1..n} 1/k.
a(n) = (n+1)! - A000254(n). (End)
E.g.f.: (1 - (x - 1)*log(1 - x))/(x - 1)^2. - Benedict W. J. Irwin, Sep 27 2016
a(n) = Sum_{k=0..n*(n-1)/2} (k+1) * A129177(n,k). - Alois P. Heinz, May 04 2023

Extensions

a(0) = 1 prepended by Peter Luschny, Dec 09 2021

A213167 a(n) = n! - (n-2)!.

Original entry on oeis.org

1, 5, 22, 114, 696, 4920, 39600, 357840, 3588480, 39553920, 475372800, 6187104000, 86699289600, 1301447347200, 20835611596800, 354379753728000, 6381450915840000, 121289412980736000, 2426499634470912000
Offset: 2

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

Row sums of A134433 starting from k=3.
a(n) = sum( (-1)^k*k*A008276(n,k), k=1..n-1).
a(n) = sum( (-1)^k*k*A054654(n,k), k=1..n-2).
For n >= 3, a(n) = number whose factorial base representation (A007623) begins with digits {n-1} and {n-2} followed by n-3 zeros. Viewed in that base, this sequence looks like this: 1, 21, 320, 4300, 54000, 650000, 7600000, 87000000, 980000000, A900000000, BA000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015.

Crossrefs

Column 4 of A257503 (apart from initial 1. Equally, row 4 of A257505).
Cf. A067318.

Programs

Formula

a(n) = n! - (n-2)!.
G.f.: (1/G(0) - 1 - x)/x^2 where G(k) = 1 - x/(x - 1/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 13 2012
G.f.: (1+x)/x^2*(1/Q(0)-1), where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 08 2013
G.f.: 2*Q(0), where Q(k)= 1 - 1/( (k+1)*(k+2) - x*(k+1)^2*(k+2)^2*(k+3)/(x*(k+1)*(k+2)*(k+3) - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 08 2013

A102409 Even triangle n!. This table read by rows gives the coefficients of sum formulas of n-th factorials (A000142). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+3, where k=[2*n+1+(-1)^(n-1)]/4 and T(i,k) satisfies n! = Sum_{i=1..k+3} T(i,k) * n^(i-1) / (2*k-2)!.

Original entry on oeis.org

0, 1, 0, 0, 0, -20, 8, 0, 0, 20280, -6530, -1275, 362, 3, 0, -8749440, 21627600, -4871940, -66510, 48300, 390, 0, -261763004160, 72965762016, 13117344800, -3757930680, 72406040, 13101144, 90440, 0, -974260634054400, -1140185248443360, 353509119454680, -8136128999880, -3234018579750
Offset: 1

Author

André F. Labossière, Jan 07 2005

Keywords

Comments

Incidentally, the sum of signed coefficients for each k-th row is divisible by (2*k-2)!. Moreover, another variant (but an incomplete one, and sorted differently) of the above sequence is presented in A101751.

Examples

			Triangle starts:
0, 1, 0, 0;
0, -20, 8, 0, 0;
20280, -6530, -1275, 362, 3, 0;
-8749440, 21627600, -4871940, -66510, 48300, 390, 0;
-261763004160, 72965762016, 13117344800, -3757930680, 72406040, 13101144, 90440, 0;
...
11!=39916800; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing 11!.
=> 11! = [ -974260634054400 -1140185248443360*11 +353509119454680*11^2 -8136128999880*11^3 -3234018579750*11^4 +109743298560*11^5 +6053880420*11^6 +34067880*11^7 +9450*11^8 ]/10! = 39916800.
		

A102410 Odd triangle n!. This table read by rows gives the coefficients of sum formulas of n-th Factorials (A000142). The k-th row (6>=k>=1) contains T(i,k) for i=1 to k+2, where k=[2*n+3+(-1)^n]/4 and T(i,k) satisfies n! = Sum_{i=1..k+2} T(i,k) * n^(i-1) / (2*k-2)!.

Original entry on oeis.org

1, 0, 0, -6, 3, 1, 0, 2400, -2024, 264, 32, 0, 2570400, 909720, -666540, 55800, 3420, 0, -19071521280, 12195884736, -762499920, -282106440, 22425480, 741384, 840, -219303218534400, -11953192930560, 27128332828800, -2808016545600, -125442525600, 14164990560, 280576800
Offset: 1

Author

André F. Labossière, Jan 07 2005

Keywords

Comments

Incidentally, the sum of signed coefficients for each k-th row is divisible by (2*k-2)!.

Examples

			Triangle starts:
1, 0, 0;
-6, 3, 1, 0;
2400, -2024, 264, 32, 0;
2570400, 909720, -666540, 55800, 3420, 0;
-19071521280, 12195884736, -762499920, -282106440, 22425480, 741384, 840;
...
11!=39916800; substituting n=11 in the formula of the k-th row we obtain k=6 and the coefficients T(i,6) are those needed for computing 11!.
=> 11! = [ -219303218534400 -11953192930560*11 +27128332828800*11^2 -2808016545600*11^3 -125442525600*11^4 +14164990560*11^5 +280576800*11^6 +453600*11^7 ]/10! = 39916800.
		

A133480 Left 3-step factorial (n,-3)!: a(n) = (-1)^n * A008544(n).

Original entry on oeis.org

1, -2, 10, -80, 880, -12320, 209440, -4188800, 96342400, -2504902400, 72642169600, -2324549427200, 81359229952000, -3091650738176000, 126757680265216000, -5577337931669504000, 262134882788466688000, -13106744139423334400000, 694657439389436723200000, -38900816605808456499200000
Offset: 0

Author

Tom Copeland, Dec 23 2007

Keywords

Comments

To motivate the definition, consider c(t) = column vector(1, t, t^2, t^3, t^4, t^5, ...), T = A094638 and the list of integers.
Starting at 1 and sampling every integer to the right, we obtain (1,2,3,4,5,...) from which factorials may be formed. It's true that
T * c(1) = (1, 1*2, 1*2*3, 1*2*3*4, ...), giving n! for n > 0. Call this sequence the right 1-step factorial (n,+1)!.
Starting at 1 and sampling every integer to the left, we obtain (1,0,-1,-2,-3,-4,-5,...). And,
T * c(-1) = (1, 1*0, 1*0*-1, 1*0*-1*-2, ...) = (1,0,0,0,...). Call this the left 1-step factorial (n,-1)!.
Sampling every other integer to the right, we obtain (1,3,5,7,9,...).
T * c(2) = (1, 1*3, 1*3*5, ...) = (1,3,15,105,945,...), giving A001147 for n > 0, the right 2-step factorial, (n,+2)!.
Sampling every other integer to the left, we obtain (1,-1,-3,-5,-7,...).
T * c(-2) = (1, 1*-1, 1*-1*-3, 1*-1*-3*-5, ...) = (1,-1,3,-15,105,-945,...) = signed A001147, the left 2-step factorial, (n,-2)!.
Sampling every 3 steps to the right, we obtain (1,4,7,10,...).
T * c(3) = (1, 1*4, 1*4*7, ...) = (1,4,28,280,...), giving A007559 for n > 0, the right 3-step factorial, (n,+3)!.
Sampling every 3 steps to the left, we obtain (1,-2,-5,-8,-11,...), giving
T * c(-3) = (1, 1*-2, 1*-2*-5, 1*-2*-5*-8, ...) = (1,-2,10,-80,880,...) = signed A008544 = the left 3-step factorial, (n,-3)!.
The list partition transform A133314 of [1,T * c(t)] gives signed [1,T *c(-t)]. For example:
LPT[1,T*c(1)] = LPT[1,(n,+1)! ] = LPT[A000142] = (1,-1,0,0,0,...) = signed [1,(n,-1)! ]
LPT[1,T*c(2)] = LPT[1,(n,+2)! ] = LPT[A001147] = (1,-1,-1,-3,-15,-105,-945,...) = (1,-A001147) = signed [1,(n,-2)! ]
LPT[1,T*c(3)] = LPT[1,(n,+3)! ] = LPT[A007559] = (1,-1,-2,-10,-80,-880,...) = (1,-A008544) = signed [1,(n,-3)! ]
LPT[1,T*c(-3)] = LPT[1,(n,-3)! ] = signed A007559 = signed [1,(n,+3)! ].
And, e.g.f.[1,T * c(m)] = e.g.f.[1,(n,m)! ] = (1-m*x)^(-1/m).
Also with P(n,t) = Sum_{k=0..n-1} T(n,k+1) * t^k = 1*(1+t)*(1+2t)...(1+(n-1)*t) and P(0,t)=1, exp[P(.,t)*x] = (1-tx)^(-1/t).
T(n,k+1) = (1/k!) (D_t)^k (D_x)^n [ (1-tx)^(-1/t) - 1 ] evaluated at t=x=0.
And, (1-tx)^(-1/t) - 1 is the e.g.f. for plane increasing m-ary trees when t = (m-1), discussed by Bergeron et al. in "Varieties of Increasing Trees" and the book Combinatorial Species and Tree-Like Structures, cited in the OEIS.
The above relations reveal the intimate connections, through T or LPT or sampling, between the right and left step factorials, (n,+m)! and (n,-m)!. The pairs have conjugate interpretations as trees, ignoring signs, which Callan and Lang have noted in several of the OEIS entries above. Also note unsigned (n,-2)! is the diagonal of A001498 and (n,+2)!, the first subdiagonal.

Programs

  • Magma
    [Round((-3)^n*Gamma(n+2/3)/Gamma(2/3)): n in [0..20]]; // G. C. Greubel, Mar 31 2019
    
  • Mathematica
    Table[(-3)^n*Pochhammer[2/3, n], {n,0,20}] (* G. C. Greubel, Mar 31 2019 *)
  • PARI
    vector(20, n, n--; round((-3)^n*gamma(n+2/3)/gamma(2/3))) \\ G. C. Greubel, Mar 31 2019
    
  • Sage
    [(-3)^n*rising_factorial(2/3,n) for n in (0..20)] # G. C. Greubel, Mar 31 2019

Formula

a(n) = b(0)*b(1)...b(n) where b = (1,-2,-5,-8,-11,...) .
a(n) = 3^(n+1)*Sum_{k=1..n+1} stirling1(n+1,k)/3^k. - Vladimir Kruchinin, Jul 02 2011
G.f.: (1/Q(0)-1)/x where Q(k) = 1 + x*(3*k-1)/( 1 + x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 22 2013
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(3*k-1)/(x*(3*k-1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
From G. C. Greubel, Mar 31 2019: (Start)
G.f.: Hypergeometric2F0(1,2/3; -; -3*x).
E.g.f.: (1+3*x)^(-2/3).
a(n) = (-3)^n*Pochhammer(2/3, n) = (-3)^n*(Gamma(n+2/3)/Gamma(2/3)). (End)
D-finite with recurrence: a(n) +(3*n-1)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

Extensions

Terms a(11) onward added by G. C. Greubel, Mar 31 2019
Previous Showing 41-50 of 62 results. Next