cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A216172 Number of all possible tetrahedra of any size, having reverse orientation to the original regular tetrahedron, formed when intersecting the latter by planes parallel to its sides and dividing its edges into n equal parts.

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 39, 66, 105, 159, 231, 325, 445, 595, 780, 1005, 1275, 1596, 1974, 2415, 2926, 3514, 4186, 4950, 5814, 6786, 7875, 9090, 10440, 11935, 13585, 15400, 17391, 19569, 21945, 24531, 27339, 30381, 33670, 37219, 41041, 45150, 49560, 54285, 59340
Offset: 1

Views

Author

V.J. Pohjola, Sep 03 2012

Keywords

Comments

The number of all possible tetrahedra of any size, having the same orientation as the original regular tetrahedron is given by A000332(n+3).
Create a sequence wherein the sum of three consecutive numbers is a triangular number: 0,0,0,1,2,3,5,7...; then find the partial sums of this sequence: 0,0,0,1,3,6,11,18...; then take the partial sums of this sequence: 0,0,0,1,4,10,21,39,66... and after dropping the first two zeros, you get this sequence. - J. M. Bergot, Apr 14 2016

Examples

			For n=9 the numbers of the reversely oriented tetrahedra, starting from the smallest size, are A000292(7)=84, A000292(4)=20, and A000292(1)=1, the sum being a(9)=105.
		

Crossrefs

Programs

  • Magma
    I:=[0, 0, 1, 4, 10, 21, 39]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 12 2012
    
  • Mathematica
    nnn = 100; Tev[n_] := (n - 2) (n - 1) n/6; Table[Sum[Tev[n - nn], {nn, 0, n - 1, 3}], {n, nnn}]
    Table[(1/72) (-6 n - 5 n^2 + 2 n^3 + n^4 + 4 - 4 (-1)^Mod[n, 3]), {n, 50}]
    CoefficientList[Series[x^2 / ((1 - x)^5*(1 + x + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 12 2012 *)
    LinearRecurrence[{4,-6,5,-5,6,-4,1},{0,0,1,4,10,21,39},50] (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    a(n)=(n^4+2*n^3-5*n^2-6*n+4-4*(-1)^(n%3))/72 \\ Charles R Greathouse IV, Sep 12 2012

Formula

a(n) = (1/72)*(-6*n -5*n^2 +2*n^3 +n^4 +4 -4*(-1)^(n mod 3)).
G.f.: x^3/((1-x)^5*(1+x+x^2)). - Bruno Berselli, Sep 11 2012
a(3*n-1) = A000217(A115067(n)); a(3*n) = A000217(A095794(n)); a(3*n+1) = A000217(A143208(n+2)) + A000217(n). - J. M. Bergot, Apr 14 2016
E.g.f.: (1/216)*(8 - 24*x + 24*x^2 + 24*x^3 + 3*x^4)*exp(x) - (1/27)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))*exp(-x/2). - Ilya Gutkovskiy, Apr 14 2016

A000338 Expansion of x^3*(5-2*x)*(1-x^3)/(1-x)^4.

Original entry on oeis.org

5, 18, 42, 75, 117, 168, 228, 297, 375, 462, 558, 663, 777, 900, 1032, 1173, 1323, 1482, 1650, 1827, 2013, 2208, 2412, 2625, 2847, 3078, 3318, 3567, 3825, 4092, 4368, 4653, 4947, 5250, 5562, 5883, 6213, 6552, 6900, 7257, 7623, 7998, 8382, 8775, 9177, 9588, 10008, 10437, 10875, 11322, 11778
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    ff := n->9/2*n^2-15/2*n; seq(ff(n), n=3..60); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001, sequence without a(3).
  • Mathematica
    nn = 100; CoefficientList[Series[(5 - 2 x) (1 - x^3)/(1 - x)^4, {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
    LinearRecurrence[{3,-3,1},{5,18,42,75},60] (* Harvey P. Dale, Sep 20 2016 *)

Formula

a(n) = 3*A095794(n-2), n>3. - R. J. Mathar, May 30 2022
G.f.: (1+x+x^2)*(5-2*x)*x^3/(1-x)^3. - Simon Plouffe in his 1992 dissertation
Sum_{n>=3} 1/a(n) = log(3)/5 + Pi*sqrt(3)/45 = 0.3406424... - R. J. Mathar, Apr 22 2024
a(n) = 5*A005448(n-2) -2*A005448(n-3). - R. J. Mathar, Apr 22 2024

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001

A094930 Triangle T(n,m) read by rows, defined by squaring a matrix with row entries 2+3*(m-1).

Original entry on oeis.org

4, 14, 25, 30, 65, 64, 52, 120, 152, 121, 80, 190, 264, 275, 196, 114, 275, 400, 462, 434, 289, 154, 375, 560, 682, 714, 629, 400, 200, 490, 744, 935, 1036, 1020, 860, 529, 252, 620, 952, 1221, 1400, 1462, 1380, 1127, 676, 310, 765, 1184, 1540, 1806, 1955, 1960
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Comments

Matrix square of the matrix B(n,m) = 2+3*(m-1), B containing the first terms of A016789
in its row n, n>0, 1<=m<=n.

Examples

			The matrix B starts as
  2 ;
  2,5 ;
  2,5,8 ;
  2,5,8,11 ;
  2,5,8,11,14 ;
and interpreting this as a lower triangular matrix, its square T = B^2 starts
  4;
  14,25;
  30,65,64;
  52,120,152,121;
		

Crossrefs

Programs

  • Maple
    A094930 := proc(n,m) (3*m-1)*(3*m+3*n-2)*(n+1-m)/2 ; end: seq(seq(A094930(n,m),m=1..n),n=1..20) ; # R. J. Mathar, Oct 09 2009

Formula

T(n,m) = sum_{k=m..n} B(n,k)*B(k,m) = (3*m-1)*(3*m+3*n-2)*(n+1-m)/2.
Row sums: sum_{m=1..n} T(n,m) = A024212(n).
G.f. as triangle: x*y*(4+2*x+13*x*y-16*x^2*y+x^2*y^2-4*x^3*y^2)/((1-x)*(1-x*y))^3. - Robert Israel, May 06 2019

Extensions

Edited and extended by R. J. Mathar, Oct 09 2009

A096037 Triangle T(n,m) = (3*n+3*m-2)*(n+1-m)/2 read by rows.

Original entry on oeis.org

2, 7, 5, 15, 13, 8, 26, 24, 19, 11, 40, 38, 33, 25, 14, 57, 55, 50, 42, 31, 17, 77, 75, 70, 62, 51, 37, 20, 100, 98, 93, 85, 74, 60, 43, 23, 126, 124, 119, 111, 100, 86, 69, 49, 26, 155, 153, 148, 140, 129, 115, 98, 78, 55, 29, 187, 185, 180, 172, 161, 147, 130, 110, 87, 61, 32
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			The triangle starts in row n=1 as
2;
7,5;
15,13,8;
26,24,19,11;
		

Crossrefs

Programs

  • Python
    def A096037(n,m):
        return (3*n+3*m-2)*(n+1-m)//2
    print( [A096037(n,m) for n in range(20) for m in range(1,n+1)] )
    # R. J. Mathar, Oct 11 2009

Formula

T(n,m) = (3*n+3*m-2)*(n+1-m)/2 .
T(n,m) = A094930(n,m)/(3*m-1).
T(n,1) = A005449(n).
T(n,n) = A016768(n-1).
Row sums: sum_{m=1..n} T(n,m) = n^2*(n+1) = A011379(n).

Extensions

Edited and extended, A-numbers corrected by R. J. Mathar, Oct 11 2009

A143208 a(1)=2; for n>1, a(n) = (4-9*n+3*n^2)/2.

Original entry on oeis.org

2, -1, 2, 8, 17, 29, 44, 62, 83, 107, 134, 164, 197, 233, 272, 314, 359, 407, 458, 512, 569, 629, 692, 758, 827, 899, 974, 1052, 1133, 1217, 1304, 1394, 1487, 1583, 1682, 1784, 1889, 1997, 2108, 2222, 2339, 2459, 2582, 2708, 2837, 2969, 3104, 3242, 3383, 3527, 3674
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 20 2008

Keywords

Comments

Old Name was: A sequence based on odd numbers of the type 3*n + 2: a(n) = a(n - 1) + n - 1; A000096; f(n) = 3*a(n)+2.

Examples

			G.f. = 2*x - x^2 + 2*x^3 + 8*x^4 + 17*x^5 + 29*x^6 + 44*x^7 + 62*x^8 + ...
		

Crossrefs

Cf. A095794.

Programs

  • Magma
    [n eq 1 select 2 else (4-9*n+3*n^2)/2: n in [1..60]]; // G. C. Greubel, Jul 19 2024
    
  • Mathematica
    a[0] = 0; a[1] = -1; a[n_] := a[n] = a[n - 1] + n - 1; a1 = Table[a[n], {n, 0, 30}]; f[n_] := 3*a[n] + 2; Table[f[n], {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{2,-1,2,8},60] (* Harvey P. Dale, Mar 22 2018 *)
  • PARI
    Vec(x*(3*x^3-11*x^2+7*x-2)/(x-1)^3 + O(x^100)) \\ Colin Barker, Apr 14 2014
    
  • SageMath
    [(4-9*n+3*n^2)/2 + 3*int(n==1) for n in range(1,61)] # G. C. Greubel, Jul 19 2024

Formula

From Colin Barker, Apr 14 2014: (Start)
a(n) = (4 - 9*n + 3*n^2)/2 for n>1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
G.f.: x*(2 - 7*x + 11*x^2 - 3*x^3)/ (1-x)^3. (End).
a(n) = (n-2)*A095794(n) - (n-1)*A095794(n-1) for n>1. [Bruno Berselli, May 19 2015]
E.g.f.: (1/2)*(4 - 6*x + 3*x^2)*exp(x) - 2 + 3*x. - G. C. Greubel, Jul 19 2024

Extensions

Better name and edits by Colin Barker and Joerg Arndt, Apr 14 2014

A341740 a(n) is the maximum value of the magic constant in a normal magic triangle of order n.

Original entry on oeis.org

12, 23, 37, 54, 74, 97, 123, 152, 184, 219, 257, 298, 342, 389, 439, 492, 548, 607, 669, 734, 802, 873, 947, 1024, 1104, 1187, 1273, 1362, 1454, 1549, 1647, 1748, 1852, 1959, 2069, 2182, 2298, 2417, 2539, 2664, 2792, 2923, 3057, 3194, 3334, 3477, 3623, 3772, 3924
Offset: 3

Views

Author

Stefano Spezia, Feb 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{12,23,37},49]

Formula

O.g.f.: x^3*(12 - 13*x + 4*x^2)/(1 - x)^3.
E.g.f.: 3 + x - 2*x^2 - exp(x)*(6 - 4*x - 3*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5.
a(n) = (3*n^2 + n - 6)/2 for n > 2.
a(n) = A285009(n) + A016777(n-2) - 1 for n > 3.
a(n) = A095794(n) - 2 = A140090(n-1) - 1. - Hugo Pfoertner, Feb 18 2021

A027625 Numerator of n*(n+5)/((n+2)*(n+3)).

Original entry on oeis.org

0, 1, 7, 4, 6, 25, 11, 14, 52, 21, 25, 88, 34, 39, 133, 50, 56, 187, 69, 76, 250, 91, 99, 322, 116, 125, 403, 144, 154, 493, 175, 186, 592, 209, 221, 700, 246, 259, 817, 286, 300, 943, 329, 344, 1078, 375, 391, 1222
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027626 (denominator), A095794, A115067, A179436.

Programs

  • Magma
    [Numerator(n*(n+5)/((n+2)*(n+3))): n in [0..50]]; // Vincenzo Librandi, Mar 04 2014
    
  • Mathematica
    CoefficientList[Series[x*(1+7*x+4*x^2+3*x^3+4*x^4-x^5-x^6-2*x^7)/(1-x^3)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
    Numerator[25*Binomial[Range[0, 50]/5 +1, 2]/3] (* G. C. Greubel, Aug 05 2022 *)
  • PARI
    a(n) = numerator(n*(n+5)/6); \\ Altug Alkan, Apr 18 2018
    
  • SageMath
    [numerator(n*(n+5)/6) for n in (0..50)] # G. C. Greubel, Aug 05 2022

Formula

G.f.: x*(1 + 7*x + 4*x^2 + 3*x^3 + 4*x^4 - x^5 - x^6 - 2*x^7)/(1 - x^3)^3.
a(n) = numerator of n*(n+5)/6. - Altug Alkan, Apr 18 2018
From Peter Bala, Aug 06 2022: (Start)
a(n) is quasi-polynomial in n:
a(3*n) = (1/2)*n*(3*n+5) = A115067(n+1).
a(3*n+1) = (1/2)*(n+2)*(3*n+1) = A095794(n+1).
a(3*n+2) = (1/2)*(3*n+2)*(3*n+7) = A179436(n). (End)
Sum_{n>=1} 1/a(n) = 4*Pi/(15*sqrt(3)) + 87/50. - Amiram Eldar, Aug 11 2022

A193002 Triangle T(n,k)=0 (k odd), T(0,0)=-3, T(n,0)=1 (n > 0) and T(n,k) = T(n-1,k) - T(n-2,k-2).

Original entry on oeis.org

-3, 1, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 1, 0, -3, 1, 0, 0, 0, -5, 0, 1, 0, -1, 0, -6, 0, 3, 1, 0, -2, 0, -6, 0, 8, 0, 1, 0, -3, 0, -5, 0, 14, 0, -3, 1, 0, -4, 0, -3, 0, 20, 0, -11, 0, 1, 0, -5, 0, 0, 0, 25, 0, -25, 0, 3, 1, 0, -6
Offset: 0

Views

Author

Paul Curtz, Jul 14 2011

Keywords

Comments

Consider an array with recurrence BB(m,n) = BB(m,n-1) + BB(m-1,n), m >= 0:
3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7,
3, 5, 6, 6, 5, 3, 0, -4, -9, -15, -22,
3, 8, 14, 20, 25, 28, 28, 24, 15, 0, -22,
3, 11, 25, 45, 70, 98, 126, 150, 165, 165, 143,
3, 14, 39, 84, 154, 252, 378, 528, 693, 858, 1001,
with BB(m,n) = (3m-n)*binomial(n+m-1,n)/m if m > 0. So the BB are polynomials of degree m in n:
BB(1,n) = -(n-3)/1,
BB(2,n) = -(n-6)*(n+1)/2, (see A055999)
BB(3,n) = -(n-9)*(n+1)*(n+2)/6,
BB(4,n) = -(n-12)*(n+1)*(n+2)*(n+3)/24,
BB(5,n) = -(n-15)*(n+1)*(n+2)*(n+3)*(n+4)/120.
Columns in the array are A010701, A016789, A095794, A005564, A059302.
T(n,k) is a zero-padded, column-shifted, sign-modified transpose of this array.

Examples

			Triangle begins
  -3;
   1,   0;
   1,   0,   3;
   1,   0,   2,   0;
   1,   0,   1,   0,  -3;
   1,   0,   0,   0,  -5,   0;
   1,   0,  -1,   0,  -6,   0,   3;
   1,   0,  -2,   0,  -6,   0,   8,   0;
   1,   0,  -3,   0,  -5,   0,  14,   0,  -3;
   1,   0,  -4,   0,  -3,   0,  20,   0, -11,   0;
		

Crossrefs

Cf. A174559.

Programs

  • Maple
    BB := proc(m,n) if m=0 then if n= 0 then 3 ; else -1; end if; else (3*m-n)*binomial(n+m-1,n)/m ; end if; end proc:
    A193002 := proc(n,k) if type(k,'odd') then 0; else (-1)^(1+k/2)*BB(k/2,n-k) ; end if; end proc:
    seq(seq(A193002(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 30 2011

Formula

Sum_{k=0..n} T(n,k) = A130806(n+5). (row sums)
Sum_{k=0..n} (-1)^(k/2)*T(n,k) = -A000032(n-2). (alternating row sums)
T(n,k) = (-1)^(1+k/2)*BB(k/2,n-k). - R. J. Mathar, Aug 30 2011
T(n,2k) = (-1)^(1+k)*(5-n/k)*binomial(n-k-1,k-1), k > 0. - R. J. Mathar, Aug 30 2011

A236343 Expansion of (1 - x + 2*x^2 - x^3) / ((1 - x)^2 * (1 - x^3)) in powers of x.

Original entry on oeis.org

1, 1, 3, 5, 6, 9, 12, 14, 18, 22, 25, 30, 35, 39, 45, 51, 56, 63, 70, 76, 84, 92, 99, 108, 117, 125, 135, 145, 154, 165, 176, 186, 198, 210, 221, 234, 247, 259, 273, 287, 300, 315, 330, 344, 360, 376, 391, 408, 425, 441, 459, 477, 494, 513, 532, 550, 570, 590
Offset: 0

Views

Author

Michael Somos, Jan 22 2014

Keywords

Comments

The sequence is a quasi-polynomial sequence.
Given a sequence of Laurent polynomials defined by b(n) = (b(n-2)^2 - b(n-1)*b(n-3) * 2/x) / b(n-4), b(-2) = x, b(-4) = -b(-3) = -b(-1) = 1. Then the denominator of b(n) is x^a(n).

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 6*x^4 + 9*x^5 + 12*x^6 + 14*x^7 + 18*x^8 + ...
		

Crossrefs

Cf. A236337. Trisections are A000326, A095794, A045943.

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+2*x^2-x^3)/((1-x)^2*(1-x^3)))); // G. C. Greubel, Aug 07 2018
    
  • Maple
    seq(coeff(series((1-x+2*x^2-x^3)/((1-x)^2*(1-x^3)),x,n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Feb 12 2019
  • Mathematica
    CoefficientList[Series[(1-x+2*x^2-x^3)/((1-x)^2*(1-x^3)), {x, 0, 60}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = (n * (n+5) + [6, 0, 4][n%3 + 1]) / 6};
    
  • PARI
    {a(n) = if( n<0, polcoeff( x^2 * (-1 + 2*x - x^2 + x^3) / ((1 - x)^2 * (1 - x^3)) + x * O(x^-n), -n), polcoeff( (1 - x + 2*x^2 - x^3) / ((1 - x)^2 * (1 - x^3)) + x * O(x^n), n))};
    
  • Sage
    ((1-x+2*x^2-x^3)/((1-x)^2*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z.
G.f.: (1 - x + 2*x^2 - x^3) / ((1 - x)^2 * (1 - x^3)).
Second difference is period 3 sequence [2, 0, -1, ...].
a(n) = 2*a(n-3) + a(n-6) + 3 = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(-6-n) = A236337(n).
From Peter Bala, Feb 11 2019: (Start)
a(3*n) = (1/2)*(n + 1)*(3*n + 2);
a(3*n+1) = (1/2)*(n + 1)*(3*n + 4) - 1;
a(3*n+2) = (1/2)*(n + 1)*(3*n + 6). (End)

A272058 Start with all terms set to 0. Then add n to the next n+3 terms for n=0,1,2,... .

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 14, 20, 25, 33, 39, 49, 56, 68, 76, 90, 99, 115, 125, 143, 154, 174, 186, 208, 221, 245, 259, 285, 300, 328, 344, 374, 391, 423, 441, 475, 494, 530, 550, 588, 609, 649, 671, 713, 736, 780, 804, 850, 875, 923, 949, 999, 1026, 1078, 1106
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 19 2016

Keywords

Examples

			n  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, ...
__________________________________________
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
+       0, 0, 0
+          1, 1, 1, 1,
+             2, 2, 2, 2, 2
+                3, 3, 3, 3, 3, 3
+                   4, 4, 4, 4, 4, 4, 4
+                      5, 5, 5, 5, 5, 5, 5, 5
+                         6, 6, 6, 6, 6, 6, 6, 6, 6
+                            7, 7, 7, 7, 7, 7, 7, 7, 7, 7
+                               8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
+                                  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
+                                     ...
__________________________________________
a(n)|0, 0, 1, 3, 6,10,14,20,25,33,39, ...
		

Crossrefs

Programs

  • Magma
    [0,0] cat [(6*n^2+6*n-23+(7-2*n)*(-1)^n)/16 : n in [2..100]];
  • Maple
    A272058:=n->(6*n^2+6*n-23+(7-2*n)*(-1)^n)/16: 0,0,seq(A272058(n),n=2..100);
  • Mathematica
    CoefficientList[Series[x^2*(1 + 2 x + x^2 - x^4)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1, 0, 0}, {0, 0, 1, 3, 6, 10, 14}, 60]

Formula

G.f.: x^2*(1 + 2*x + x^2 - x^4)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
a(n) = (6*n^2 + 6*n - 23 + (7 - 2*n)*(-1)^n)/16 for n > 1.
a(n) = floor((n+3)/4) * floor((3*n-4)/2) + (floor((n-1)/2) mod 2) * floor((3*n-3)/4) for n > 1.
For n > 1, a(2n) = A095794(n). - Jon E. Schoenfield, Feb 19 2022
Previous Showing 11-20 of 25 results. Next