A003665
a(n) = 2^(n-1)*( 2^n + (-1)^n ).
Original entry on oeis.org
1, 1, 10, 28, 136, 496, 2080, 8128, 32896, 130816, 524800, 2096128, 8390656, 33550336, 134225920, 536854528, 2147516416, 8589869056, 34359869440, 137438691328, 549756338176, 2199022206976, 8796095119360, 35184367894528, 140737496743936, 562949936644096, 2251799847239680
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
- M. Gardner, Riddles of Sphinx, M.A.A., 1987, p. 145.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. K. Guy, s-Additive sequences, Preprint, 1994. (Annotated scanned copy)
- Bill Sands, Problem 3257, Crux Math. 33 (2007), No.5, p. 298.
- Index entries for linear recurrences with constant coefficients, signature (2,8).
-
List([0..30], n-> 2^(n-1)*(2^n +(-1)^n)); # G. C. Greubel, Aug 02 2019
-
[2^(n-1)*( 2^n + (-1)^n ): n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
-
A003665:=n->2^(n-1)*( 2^n + (-1)^n ): seq(A003665(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
-
CoefficientList[Series[(1+8x)/(1-2x-8x^2), {x,0,30}], x] (* or *)
LinearRecurrence[{2,8}, {1,1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
-
a(n)=2^(n-1)*( 2^n + (-1)^n );
-
[2^(n-1)*(2^n +(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 02 2019
A120612
For n>1, a(n) = 2*a(n-1) + 15*a(n-2); a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 17, 49, 353, 1441, 8177, 37969, 198593, 966721, 4912337, 24325489, 122336033, 609554401, 3054149297, 15251614609, 76315468673, 381405156481, 1907542343057, 9536162033329, 47685459212513, 238413348924961, 1192108586037617, 5960417405949649
Offset: 0
a(4) = 353 = 2*49 + 15*17 = 2*a(3) + 15*a(2).
-
Table[(5^n+(-1)^n*3^n)/2,{n,1,30}] (* Alexander Adamchuk, Aug 31 2006 *)
a[n_] := (5^n + (-3)^n)/2; Array[a, 24, 0] (* Or *)
CoefficientList[Series[(1 + 15 x)/(1 - 2 x - 15 x^2), {x, 0, 23}], x] (* Or *)
LinearRecurrence[{2, 15}, {1, 1}, 25] (* Or *)
Table[ MatrixPower[{{1, 2}, {8, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 *)
-
a(n)=([1,4; 4,1]^n)[1,1] \\ Charles R Greathouse IV, Oct 16 2013
-
concat(1, Vec((15*x+1)/(-15*x^2-2*x+1) + O(x^100))) \\ Colin Barker, Mar 12 2014
-
a(n) = ( 5^n + (-1)^n * 3^n ) / 2 \\ Charles R Greathouse IV, May 18 2015
A090042
a(n) = 2*a(n-1) + 11*a(n-2) for n > 1, a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 13, 37, 217, 841, 4069, 17389, 79537, 350353, 1575613, 7005109, 31341961, 139740121, 624241813, 2785624957, 12437909857, 55517694241, 247852396909, 1106399430469, 4939175226937, 22048744189033, 98428415874373, 439393017828109, 1961498610274321, 8756320416657841
Offset: 0
-
a := [1, 1];; for n in [3..30] do a[n] := 2*a[n-1]+ 11*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
-
a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 2*procname(n-1) + 11*procname(n-2) fi; end:
seq(a(n), n=0..25); # Muniru A Asiru, Feb 18 2018
-
a[n_]:= Simplify[((1+Sqrt[12])^n +(1-Sqrt[12])^n)/2]; Array[a, 30, 0] (* or *)
CoefficientList[Series[(x-1)/(11x^2+2x-1), {x,0,30}], x] (* or *)
Table[ MatrixPower[{{1, 2}, {6, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 and modified per Wolfdieter Lang Feb 17 2018 *)
LinearRecurrence[{2, 11}, {1, 1}, 30] (* Ray Chandler, Aug 01 2015 *)
-
x='x+O('x^30); Vec((1-x)/(1-2*x-11*x^2)) \\ Altug Alkan, Feb 17 2018
-
((1-x)/(1-2*x-11*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
A090139
a(n) = 10*a(n-1) - 20*a(n-2), a(0)=1,a(1)=5.
Original entry on oeis.org
1, 5, 30, 200, 1400, 10000, 72000, 520000, 3760000, 27200000, 196800000, 1424000000, 10304000000, 74560000000, 539520000000, 3904000000000, 28249600000000, 204416000000000, 1479168000000000, 10703360000000000
Offset: 0
-
a:=[1,5];; for n in [3..30] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
-
I:=[1,5]; [n le 2 select I[n] else 10*Self(n-1) -20*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
-
LinearRecurrence[{10, -20}, {1,5}, 30] (* G. C. Greubel, Aug 02 2019 *)
-
my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Aug 02 2019
-
((1-5*x)/(1-10*x+20*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
A125816
a(n) = ((1+sqrt(13))^n + (1-sqrt(13))^n)/2.
Original entry on oeis.org
1, 1, 14, 40, 248, 976, 4928, 21568, 102272, 463360, 2153984, 9868288, 45584384, 209588224, 966189056, 4447436800, 20489142272, 94347526144, 434564759552, 2001299832832, 9217376780288, 42450351554560, 195509224472576
Offset: 1
-
a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+12*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +12*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
-
Expand[Table[((1+Sqrt[13])^n +(1-Sqrt[13])^n)/(2), {n,0,30}]] (* Artur Jasinski *)
LinearRecurrence[{2,12}, {1,1}, 30] (* G. C. Greubel, Aug 02 2019 *)
-
my(x='x+O('x^30)); Vec((1-x)/(1-2*x-12*x^2)) \\ G. C. Greubel, Aug 02 2019
-
((1-x)/(1-2*x-12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
A125818
a(n) = ((1 + 3*sqrt(2))^n + (1 - 3*sqrt(2))^n)/2.
Original entry on oeis.org
1, 1, 19, 55, 433, 1801, 10963, 52543, 291457, 1476145, 7907059, 40908583, 216237169, 1127920249, 5931872371, 31038388975, 162918608257, 853489829089, 4476595998547, 23462519091607, 123027170158513, 644917164874345, 3381296222443411, 17726184247750687
Offset: 1
-
a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+17*a[n-2]; od; a; # G. C. Greubel, Aug 03 2019
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +17*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 03 2019
-
Expand[Table[((1+3*Sqrt[2])^n +(1-3*Sqrt[2])^n)/2, {n,0,30}]]
(* alternate program *)
LinearRecurrence[{2, 17}, {1, 1}, 30] (* T. D. Noe, Mar 28 2012 *)
-
my(x='x+O('x^30)); Vec((1-x)/(1-2*x-17*x^2)) \\ G. C. Greubel, Aug 03 2019
-
((1-x)/(1-2*x-17*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
A133294
a(n) = 2*a(n-1) + 10*a(n-2), a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 12, 34, 188, 716, 3312, 13784, 60688, 259216, 1125312, 4842784, 20938688, 90305216, 389997312, 1683046784, 7266066688, 31362601216, 135385869312, 584397750784, 2522654194688, 10889285897216, 47005113741312
Offset: 0
-
a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+10*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
-
a[n_]:= Simplify[((1+Sqrt[11])^n + (1-Sqrt[11])^n)/2]; Array[a, 30, 0] (* Or *) CoefficientList[Series[(1-x)/(1-2x-10x^2), {x,0,30}], x] (* Or *) LinearRecurrence[{2, 10}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
-
my(x='x+O('x^30)); Vec((1-x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Aug 02 2019
-
((1-x)/(1-2*x-10*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
A133343
a(n) = 2*a(n-1) + 13*a(n-2), for n>1, a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 15, 43, 281, 1121, 5895, 26363, 129361, 601441, 2884575, 13587883, 64675241, 305992961, 1452764055, 6883436603, 32652805921, 154790287681, 734067052335, 3480407844523, 16503687369401, 78252676717601
Offset: 0
-
[n le 2 select 1 else 2*Self(n-1) +13*Self(n-2): n in [1..41]]; // G. C. Greubel, Oct 15 2022
-
f[n_]:= Simplify[((1+Sqrt[14])^n + (1-Sqrt[14])^n)/2]; Array[f, 25, 0] (* Or *)
CoefficientList[Series[(1+13x)/(1-2x-13x^2), {x, 0, 23}], x] (* Or *)
LinearRecurrence[{2, 13}, {1, 1}, 25] (* Or *)
Table[ MatrixPower[{{1, 2}, {7, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 *)
-
Vec((1-x)/(1-2*x-13*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 12 2012
-
A133343=BinaryRecurrenceSequence(2,13,1,1)
[A133343(n) for n in range(41)] # G. C. Greubel, Oct 15 2022
A139011
Real part of (2 + i)^n, where i = sqrt(-1).
Original entry on oeis.org
1, 2, 3, 2, -7, -38, -117, -278, -527, -718, -237, 2642, 11753, 33802, 76443, 136762, 164833, -24478, -922077, -3565918, -9653287, -20783558, -34867797, -35553398, 32125393, 306268562, 1064447283, 2726446322, 5583548873, 8701963882
Offset: 0
1 + 2*x + 3*x^2 + 2*x^3 - 7*x^4 - 38*x^5 - 117*x^6 - 278*x^7 - 527*x^8 + ...
a(5) = -38 since (2 + i)^5 = (-38 + 41*i).
a(5) = -38 since [2,-1; 1,2]^5 = [ -38,-41; 41,-38], where 41 = A099456(5).
a(5) = -38 = A006496(5).
- Seiichi Manyama, Table of n, a(n) for n = 0..2862 (first 201 terms from Vincenzo Librandi)
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-5).
-
[ Integers()!Real((2+Sqrt(-1))^n): n in [0..29] ]; // Bruno Berselli, Apr 26 2011
-
restart: G(x):=exp(x)^2*cos(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..29 ); # Zerinvary Lajos, Apr 06 2009
-
Re[(2+I)^Range[0,30]] (* or *) LinearRecurrence[{4,-5},{1,2},30] (* Harvey P. Dale, Nov 02 2022 *)
-
a(n) = real((2 + I)^n) /* Michael Somos, Dec 26 2009 */
-
Vec((1 - 2*x) / (1 - 4*x + 5*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017
-
[lucas_number2(n,4,5)/2 for n in range(0,31)] # Zerinvary Lajos, Jul 08 2008
A143079
a(n) = ((9+sqrt(9))^n + (9-sqrt(9))^n)/2.
Original entry on oeis.org
1, 9, 90, 972, 11016, 128304, 1516320, 18055872, 215830656, 2584929024, 30988915200, 371685583872, 4459138615296, 53503133036544, 641998414356480, 7703745879785472, 92443540002471936, 1109314016699940864
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Oct 15 2008
Comments