A321799
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^5).
Original entry on oeis.org
1, 1, 6, 31, 176, 1071, 6797, 44493, 298279, 2037550, 14131441, 99244564, 704360703, 5043969503, 36399930179, 264451303466, 1932650461883, 14198082537190, 104792195449688, 776681663951998, 5778226417888171, 43135097969972931, 323012620411650708, 2425745980876575899, 18264470545275495152
Offset: 0
-
List([0..25],n->Sum([0..n],k->Binomial(n,k)/(n-k+1)*Binomial(n+4*k-1,n-k))); # Muniru A Asiru, Nov 24 2018
-
[1] cat [&+[(Binomial(n,k)/(n-k+1)) * Binomial(n+4*k-1,n-k): k in [0..n]]: n in [1.. 25]]; // Vincenzo Librandi, Dec 08 2018
-
eq:= a - 1/(1-x/(1-x*a)^5):
S:= series(RootOf(numer(eq),a),x,31):
seq(coeff(S,x,j),j=0..30); # Robert Israel, Dec 10 2018
-
a[n_]:=Sum[ Binomial[n,k]/(n-k+1)*Binomial[n+4*k-1,n-k], {k,0,n}]; Array[a, 20, 0] (* Stefano Spezia, Nov 19 2018 *)
A[] = 0; Do[A[x] = 1/(1-x/(1-x*A[x])^5)+O[x]^25, {25}];
CoefficientList[A[x], x] (* Jean-François Alcover, Dec 30 2018 *)
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(n+4*k-1, n-k)/(n-k+1)); \\ Michel Marcus, Nov 19 2018
-
[sum(binomial(n,k)*binomial(n+4*k-1,n-k)/(n-k+1) for k in (0..n)) for n in range(25)] # G. C. Greubel, Dec 14 2018
A366049
Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x+x^2) ).
Original entry on oeis.org
1, 2, 8, 39, 211, 1218, 7349, 45790, 292361, 1902834, 12577737, 84205212, 569788192, 3890728052, 26775751320, 185525538183, 1293171205833, 9061500578178, 63794947215218, 451028012126797, 3200898741338041, 22794860112273294, 162841330273522907
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(3*n-k+1, n-2*k))/(n+1);
A262440
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k-1,n-k).
Original entry on oeis.org
1, 1, 5, 22, 101, 476, 2282, 11075, 54245, 267592, 1327580, 6617128, 33110090, 166215895, 836761343, 4222640822, 21354409445, 108193910000, 549084400088, 2790744368660, 14203023709276, 72371208424880, 369170645788840, 1885051297844624
Offset: 0
-
[&+[Binomial(n, k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 13 2015
-
Join[{1}, Table[Sum[ Binomial[n,k] Binomial[n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
-
a(n):=sum(binomial(n,k)*binomial(n+k-2,n-k-1),k,0,n-1)/n;
A(x):=sum(a(n)*x^n,n,1,30);
taylor(diff(A(x),x)/A(x)*x,x,0,10);
-
a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k-1,n-k))) \\ Anders Hellström, Sep 23 2015
A367232
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^2.
Original entry on oeis.org
1, 1, 5, 29, 189, 1325, 9757, 74429, 583037, 4662653, 37911037, 312457469, 2604534269, 21919435517, 185992729085, 1589480795133, 13668519794685, 118188894992381, 1026965424910333, 8962634482450429, 78528344593006589, 690502653622083581
Offset: 0
-
a(n, s=2, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
A262442
a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(n+k-1,n-k)).
Original entry on oeis.org
1, 1, 3, 12, 53, 244, 1152, 5531, 26875, 131760, 650492, 3229368, 16105344, 80624935, 404913225, 2039146908, 10293657125, 52071019600, 263888886528, 1339540863092, 6809667715812, 34663102092960, 176655038497000, 901269559693104
Offset: 0
-
[&+[Binomial(n-1, n-k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
-
Join[{1}, Table[Sum[Binomial[n-1, n-k] Binomial[ n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
-
a(n):=sum(binomial(n, k)*binomial(n+k-2, n-k-1), k, 0, n-1)/n;
A(x):=sum(a(n)*x^n, n, 1, 30);
taylor(x*diff(A(x),x)/A(x)-x^2*diff(1/x-1/A(x),x),x,0,10);
-
a(n) = sum(k=0,n,(binomial(n-1,n-k)*binomial(n+k-1,n-k))) \\ Anders Hellström, Sep 23 2015
A365133
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^2.
Original entry on oeis.org
1, 2, 9, 48, 284, 1792, 11816, 80446, 561186, 3990398, 28815594, 210746538, 1557834174, 11620294376, 87357498949, 661194915408, 5034368831334, 38534430714502, 296341243824737, 2288568585083816, 17741278361562738, 138006870242288796, 1076905750814353045
Offset: 0
-
a(n, s=2, t=2) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);
A366081
Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^2) ).
Original entry on oeis.org
1, 1, 1, 0, -5, -22, -68, -165, -285, -96, 1892, 10574, 38436, 107175, 217063, 165232, -1150565, -7780744, -31173680, -94537100, -212903852, -239418048, 788015576, 6734057510, 29396759220, 95418332383, 233697161887, 334222633632, -514863450175, -6299672869750
Offset: 0
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(2*n-k, n-2*k))/(n+1);
A215067
Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0
a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y) +b(x-1, y+1) +
`if`(irem(x, 2)=1, 0, b(x-1, y-1)) ))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 04 2013
-
f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
-
{a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
-
from mpmath import mp
mp.dps = 25; mp.pretty = True
def A215067(n) :
m = n%2; r = n//2 if n>0 else 1
return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)
[int(A215067(i)) for i in (0..32)] # Peter Luschny, Aug 03 2012
A365134
G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^3.
Original entry on oeis.org
1, 3, 18, 130, 1041, 8889, 79310, 730593, 6895575, 66337179, 648087750, 6412437474, 64125877361, 647102364990, 6581050832082, 67384499298690, 694077333315363, 7186898222178342, 74767377019254450, 781105293655408554, 8191332027277068543
Offset: 0
-
a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);
A366050
Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^2) ).
Original entry on oeis.org
1, 3, 16, 104, 750, 5769, 46373, 384885, 3273118, 28372354, 249762585, 2226782078, 20065651123, 182457467898, 1672073116401, 15427427247088, 143191280370438, 1336062703751262, 12524930325385008, 117910257665608080, 1114233543986585741
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(4*n-k+2, n-2*k))/(n+1);
Comments