cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A321799 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^5).

Original entry on oeis.org

1, 1, 6, 31, 176, 1071, 6797, 44493, 298279, 2037550, 14131441, 99244564, 704360703, 5043969503, 36399930179, 264451303466, 1932650461883, 14198082537190, 104792195449688, 776681663951998, 5778226417888171, 43135097969972931, 323012620411650708, 2425745980876575899, 18264470545275495152
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)/(n-k+1)*Binomial(n+4*k-1,n-k))); # Muniru A Asiru, Nov 24 2018
    
  • Magma
    [1] cat [&+[(Binomial(n,k)/(n-k+1)) * Binomial(n+4*k-1,n-k):  k in [0..n]]: n in [1.. 25]]; // Vincenzo Librandi, Dec 08 2018
    
  • Maple
    eq:= a - 1/(1-x/(1-x*a)^5):
    S:= series(RootOf(numer(eq),a),x,31):
    seq(coeff(S,x,j),j=0..30); # Robert Israel, Dec 10 2018
  • Mathematica
    a[n_]:=Sum[ Binomial[n,k]/(n-k+1)*Binomial[n+4*k-1,n-k], {k,0,n}]; Array[a, 20, 0] (* Stefano Spezia, Nov 19 2018 *)
    A[] = 0; Do[A[x] = 1/(1-x/(1-x*A[x])^5)+O[x]^25, {25}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Dec 30 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(n+4*k-1, n-k)/(n-k+1)); \\ Michel Marcus, Nov 19 2018
    
  • Sage
    [sum(binomial(n,k)*binomial(n+4*k-1,n-k)/(n-k+1) for k in (0..n)) for n in range(25)] # G. C. Greubel, Dec 14 2018

Formula

a(n) = Sum_{k=0..n} (C(n,k)/(n-k+1)) * C(n+4*k-1,n-k).
a(n) ~ sqrt((1 - r*s)*(1 + 4*r*s) / (5*Pi*(5*s - 2))) / (2 * n^(3/2) * r^(n+1)), where r = 0.124910212976238209867004924637837518925706044646... and s = 1.72708330560542094133450070142549940430523638921... are real roots of the system of equations s*(1 - r/(1 - r*s)^5) = 1, 5*r^2*s^2 = (1 - r*s)^6. - Vaclav Kotesovec, Nov 21 2018

A366049 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x+x^2) ).

Original entry on oeis.org

1, 2, 8, 39, 211, 1218, 7349, 45790, 292361, 1902834, 12577737, 84205212, 569788192, 3890728052, 26775751320, 185525538183, 1293171205833, 9061500578178, 63794947215218, 451028012126797, 3200898741338041, 22794860112273294, 162841330273522907
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(3*n-k+1, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-k+1,n-2*k).

A262440 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k-1,n-k).

Original entry on oeis.org

1, 1, 5, 22, 101, 476, 2282, 11075, 54245, 267592, 1327580, 6617128, 33110090, 166215895, 836761343, 4222640822, 21354409445, 108193910000, 549084400088, 2790744368660, 14203023709276, 72371208424880, 369170645788840, 1885051297844624
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 23 2015

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 13 2015
    
  • Mathematica
    Join[{1}, Table[Sum[ Binomial[n,k] Binomial[n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • Maxima
    a(n):=sum(binomial(n,k)*binomial(n+k-2,n-k-1),k,0,n-1)/n;
    A(x):=sum(a(n)*x^n,n,1,30);
    taylor(diff(A(x),x)/A(x)*x,x,0,10);
    
  • PARI
    a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k-1,n-k))) \\ Anders Hellström, Sep 23 2015

Formula

G.f.: x*A'(x)/A(x), where A(x) is g.f. of A109081.
Recurrence: 2*n*(2*n-1)*(38*n^3 - 210*n^2 + 377*n - 219)*a(n) = 2*(380*n^5 - 2480*n^4 + 5998*n^3 - 6598*n^2 + 3219*n - 540)*a(n-1) + 2*(n-2)*(76*n^4 - 382*n^3 + 572*n^2 - 300*n + 45)*a(n-2) + 3*(n-3)*(n-2)*(38*n^3 - 96*n^2 + 71*n - 14)*a(n-3). - Vaclav Kotesovec, Sep 23 2015
a(n) = n^2*hypergeom([1-n, 1-n, n+1], [3/2, 2], 1/4) for n >= 1. - Peter Luschny, Mar 06 2022
a(n) = [x^n] ( (1 - x + x^2) / (1 - x)^2 )^n. - Seiichi Manyama, Apr 29 2024
a(n) ~ sqrt((513 - 67*sqrt(57))^(1/3) + (513 + 67*sqrt(57))^(1/3)) * (10 + (1261 - 57*sqrt(57))^(1/3) + (1261 + 57*sqrt(57))^(1/3))^n / (19^(1/3) * sqrt(Pi*n) * 2^(n + 5/6) * 3^(n + 1/3)). - Vaclav Kotesovec, Apr 30 2024

A367232 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x))^2.

Original entry on oeis.org

1, 1, 5, 29, 189, 1325, 9757, 74429, 583037, 4662653, 37911037, 312457469, 2604534269, 21919435517, 185992729085, 1589480795133, 13668519794685, 118188894992381, 1026965424910333, 8962634482450429, 78528344593006589, 690502653622083581
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).

A262442 a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(n+k-1,n-k)).

Original entry on oeis.org

1, 1, 3, 12, 53, 244, 1152, 5531, 26875, 131760, 650492, 3229368, 16105344, 80624935, 404913225, 2039146908, 10293657125, 52071019600, 263888886528, 1339540863092, 6809667715812, 34663102092960, 176655038497000, 901269559693104
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 23 2015

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1, n-k)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
    
  • Mathematica
    Join[{1}, Table[Sum[Binomial[n-1, n-k] Binomial[ n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • Maxima
    a(n):=sum(binomial(n, k)*binomial(n+k-2, n-k-1), k, 0, n-1)/n;
    A(x):=sum(a(n)*x^n, n, 1, 30);
    taylor(x*diff(A(x),x)/A(x)-x^2*diff(1/x-1/A(x),x),x,0,10);
    
  • PARI
    a(n) = sum(k=0,n,(binomial(n-1,n-k)*binomial(n+k-1,n-k))) \\ Anders Hellström, Sep 23 2015

Formula

G.f.: 1+A'(x)*(x*A(x)-x^2)/A(x)^2, where A(x) is g.f. of A109081.
Recurrence: 2*(n-1)*(2*n - 1)*(38*n^2 - 162*n + 163)*a(n) = 2*(380*n^4 - 2380*n^3 + 5200*n^2 - 4676*n + 1431)*a(n-1) + 2*(n-2)*(76*n^3 - 362*n^2 + 502*n - 189)*a(n-2) + 3*(n-3)*(n-2)*(38*n^2 - 86*n + 39)*a(n-3). - Vaclav Kotesovec, Sep 23 2015
a(n) = n*hypergeom([1 - n, 1 - n, n + 1], [1, 3/2], 1/4) for n >= 1. - Peter Luschny, Mar 07 2022

A365133 G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^2.

Original entry on oeis.org

1, 2, 9, 48, 284, 1792, 11816, 80446, 561186, 3990398, 28815594, 210746538, 1557834174, 11620294376, 87357498949, 661194915408, 5034368831334, 38534430714502, 296341243824737, 2288568585083816, 17741278361562738, 138006870242288796, 1076905750814353045
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(n+(s-1)*k-1,n-k).

A366081 Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^2) ).

Original entry on oeis.org

1, 1, 1, 0, -5, -22, -68, -165, -285, -96, 1892, 10574, 38436, 107175, 217063, 165232, -1150565, -7780744, -31173680, -94537100, -212903852, -239418048, 788015576, 6734057510, 29396759220, 95418332383, 233697161887, 334222633632, -514863450175, -6299672869750
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(2*n-k, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(2*n-k,n-2*k).

A215067 Number of Motzkin n-paths avoiding odd-numbered steps that are up steps.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 21, 37, 80, 146, 322, 602, 1347, 2563, 5798, 11181, 25512, 49720, 114236, 224540, 518848, 1027038, 2384538, 4748042, 11068567, 22150519, 51817118, 104146733, 244370806, 493012682, 1159883685, 2347796965, 5536508864, 11239697816, 26560581688, 54061835288
Offset: 0

Views

Author

David Scambler, Aug 02 2012

Keywords

Comments

This sequence interleaves the counts of the closely related sequences A109081 and A106228.
a(n) is the number of (peakless) Motzkin paths of length n where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on n vertices where only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021

Examples

			a(5) = 6: fUfFd, fUfDf, fUdUd, fUdFf, fFfUd, fFfFf showing odd-numbered steps in lower case.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y) +b(x-1, y+1) +
          `if`(irem(x, 2)=1, 0, b(x-1, y-1)) ))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 04 2013
  • Mathematica
    f[n_,x_,y_]:=f[n,x,y] = If[x>n||y<0,0,If[x==n&&y==0,1, If[EvenQ[x],0,f[n,x+1,y+1]] +f[n,x+1,y-1] + f[n,x+1,y]]]; Table[f[n,0,0],{n,0,35}]
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)+x^2*O(x^n)))/(2*(1+x+x^2+x^2*O(x^n)))),n)} \\ Paul D. Hanna, Aug 02 2012
    
  • Sage
    from mpmath import mp
    mp.dps = 25; mp.pretty = True
    def A215067(n) :
        m = n%2; r = n//2 if n>0 else 1
        return r^(1-m)*mp.hyper([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)
    [int(A215067(i)) for i in (0..32)]  # Peter Luschny, Aug 03 2012

Formula

a(2*n) = Sum_{k=0..n} binomial(n+k-1,n-k) * binomial(n,k)/(n-k+1);
a(2*n+1) = Sum_{k=0..n} binomial(n+k+1,n-k) * binomial(n,k)/(n-k+1).
G.f.: (1/x)*Series_Reversion( x*(3+2*x+x^2 - sqrt((1+x^2)*(1+4*x+x^2)))/(2*(1+x+x^2)) ). - Paul D. Hanna, Aug 02 2012
G.f. satisfies: A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = (3+2*x+x^2 + sqrt((1+x^2)*(1+4*x+x^2)))/4. - Paul D. Hanna, Aug 02 2012
G.f. satisfies: Series_Reversion(x*A(x)) = x - x^2*F(-x) where F(x) = g.f. of A114465. - Paul D. Hanna, Aug 02 2012
a(n) = 3_F_2([-r,1-r-2*m,1+r+m],[(3-m)/2,(4-m)/2],1/4)*r^(1-m) for n>0 where m = n mod 2 and r = floor(n/2). - Peter Luschny, Aug 03 2012

A365134 G.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^2)^3.

Original entry on oeis.org

1, 3, 18, 130, 1041, 8889, 79310, 730593, 6895575, 66337179, 648087750, 6412437474, 64125877361, 647102364990, 6581050832082, 67384499298690, 694077333315363, 7186898222178342, 74767377019254450, 781105293655408554, 8191332027277068543
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3) = sum(k=0, n, binomial(t*(n+1), k)*binomial(n+(s-1)*k-1, n-k))/(n+1);

Formula

If g.f. satisfies A(x) = (1 + x*A(x)/(1 - x*A(x))^s)^t, then a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(t*(n+1),k) * binomial(n+(s-1)*k-1,n-k).

A366050 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^2) ).

Original entry on oeis.org

1, 3, 16, 104, 750, 5769, 46373, 384885, 3273118, 28372354, 249762585, 2226782078, 20065651123, 182457467898, 1672073116401, 15427427247088, 143191280370438, 1336062703751262, 12524930325385008, 117910257665608080, 1114233543986585741
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(4*n-k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(4*n-k+2,n-2*k).
Previous Showing 11-20 of 24 results. Next