A118654
Square array T(n,k) read by antidiagonals: T(n,k) = 2^n*Fibonacci(k) - Fibonacci(k-2).
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 3, 2, 1, 15, 8, 7, 5, 3, 1, 31, 16, 15, 11, 8, 5, 1, 63, 32, 31, 23, 18, 13, 8, 1, 127, 64, 63, 47, 38, 29, 21, 13, 1, 255, 128, 127, 95, 78, 61, 47, 34, 21, 1, 511, 256, 255, 191, 158, 125, 99, 76, 55, 34
Offset: 0
T(2,3) = 7 because 2^2(Fibonacci(3)) - Fibonacci(3-2) = 4*2 - 1 = 7.
{1};
{1, 0};
{1, 1, 1};
{1, 3, 2, 1};
{1, 7, 4, 3, 2};
{1, 15, 8, 7, 5, 3};
{1, 31, 16, 15, 11, 8, 5};
{1, 63, 32, 31, 23, 18, 13, 8};
A007502
Les Marvin sequence: a(n) = F(n) + (n-1)*F(n-1), F() = Fibonacci numbers.
Original entry on oeis.org
1, 2, 4, 9, 17, 33, 61, 112, 202, 361, 639, 1123, 1961, 3406, 5888, 10137, 17389, 29733, 50693, 86204, 146246, 247577, 418299, 705479, 1187857, 1997018, 3352636, 5621097, 9412937, 15744681, 26307469, 43912648
Offset: 1
a(7) = F(7) + 6*F(6) = 13 + 6*8 = 61.
- Les Marvin, Problem, J. Rec. Math., Vol. 10 (No. 3, 1976-1977), p. 213.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..500
- Ignas Gasparavičius, Andrius Grigutis, and Juozas Petkelis, Picturesque convolution-like recurrences and partial sums' generation, arXiv:2507.23619 [math.NT], 2025. See p. 27.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
-
a007502 n = a007502_list !! (n-1)
a007502_list = zipWith (+) a045925_list $ tail a000045_list
-- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
-
# The function 'fibrec' is defined in A354044.
function A007502(n)
n == 0 && return BigInt(1)
a, b = fibrec(n-1)
(n-1)*a + b
end
println([A007502(n) for n in 1:32]) # Peter Luschny, May 18 2022
-
A007502:= func< n | Fibonacci(n) +(n-1)*Fibonacci(n-1) >;
[A007502(n): n in [1..40]]; // G. C. Greubel, Aug 26 2025
-
Table[Fibonacci[n]+(n-1)*Fibonacci[n-1], {n,40}] (* or *) LinearRecurrence[ {2,1,-2,-1}, {1,2,4,9}, 40](* Harvey P. Dale, Jul 13 2011 *)
f[n_] := Denominator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
-
Vec((1-x^2+x^3)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
-
def A007502(n): return fibonacci(n) +(n-1)*fibonacci(n-1)
print([A007502(n) for n in range(1,41)]) # G. C. Greubel, Aug 26 2025
A022099
Fibonacci sequence beginning 1, 9.
Original entry on oeis.org
1, 9, 10, 19, 29, 48, 77, 125, 202, 327, 529, 856, 1385, 2241, 3626, 5867, 9493, 15360, 24853, 40213, 65066, 105279, 170345, 275624, 445969, 721593, 1167562, 1889155, 3056717, 4945872, 8002589, 12948461, 20951050, 33899511, 54850561, 88750072, 143600633, 232350705
Offset: 0
-
a0:=1; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
LinearRecurrence[{1, 1}, {1, 9}, 36] (* Robert G. Wilson v, Apr 11 2014 *)
A022100
Fibonacci sequence beginning 1, 10.
Original entry on oeis.org
1, 10, 11, 21, 32, 53, 85, 138, 223, 361, 584, 945, 1529, 2474, 4003, 6477, 10480, 16957, 27437, 44394, 71831, 116225, 188056, 304281, 492337, 796618, 1288955, 2085573, 3374528, 5460101, 8834629, 14294730, 23129359, 37424089, 60553448, 97977537, 158530985
Offset: 0
-
a0:=1; a1:=10; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
LinearRecurrence[{1,1},{1,10},40] (* Harvey P. Dale, May 17 2017 *)
A088209
Numerators of convergents of the continued fraction with the n+1 partial quotients: [1;1,1,...(n 1's)...,1,n+1], starting with [1], [1;2], [1;1,3], [1;1,1,4], ...
Original entry on oeis.org
1, 3, 7, 14, 28, 53, 99, 181, 327, 584, 1034, 1817, 3173, 5511, 9527, 16402, 28136, 48109, 82023, 139481, 236631, 400588, 676822, 1141489, 1921993, 3231243, 5424679, 9095126, 15230452, 25475429, 42566379, 71052157, 118489383
Offset: 0
a(3)/A007502(4) = [1;1,1,4] = 14/9.
-
a088209 n = a088209_list !! n
a088209_list = zipWith (+) a000045_list $ tail a045925_list
-- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
-
# The function 'fibrec' is defined in A354044.
function A088209(n)
n == 0 && return BigInt(1)
a, b = fibrec(n)
a + (n + 1)*b
end
println([A088209(n) for n in 0:32]) # Peter Luschny, May 18 2022
-
f[n_] := Numerator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
CoefficientList[Series[(1+x-x^3)/(-1+x+x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{1,3,7,14},40] (* Harvey P. Dale, Jul 13 2021 *)
A022103
Fibonacci sequence beginning 1, 13.
Original entry on oeis.org
1, 13, 14, 27, 41, 68, 109, 177, 286, 463, 749, 1212, 1961, 3173, 5134, 8307, 13441, 21748, 35189, 56937, 92126, 149063, 241189, 390252, 631441, 1021693, 1653134, 2674827, 4327961, 7002788, 11330749, 18333537, 29664286, 47997823, 77662109, 125659932, 203322041, 328981973
Offset: 0
-
a0:=1; a1:=13; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
-
LinearRecurrence[{1, 1}, {1, 13}, 40] (* or *) Table[LucasL[n + 5] - 5 LucasL[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *)
A094588
a(n) = n*F(n-1) + F(n), where F = A000045.
Original entry on oeis.org
0, 1, 3, 5, 11, 20, 38, 69, 125, 223, 395, 694, 1212, 2105, 3639, 6265, 10747, 18376, 31330, 53277, 90385, 153011, 258523, 436010, 734136, 1234225, 2072043, 3474029, 5817515, 9730748, 16258910, 27139509, 45258917, 75408775, 125538539
Offset: 0
-
a094588 n = a094588_list !! n
a094588_list = 0 : zipWith (+) (tail a000045_list)
(zipWith (*) [1..] a000045_list)
-- Reinhard Zumkeller, Mar 04 2012
-
# The function 'fibrec' is defined in A354044.
function A094588(n)
n == 0 && return BigInt(0)
a, b = fibrec(n - 1)
a*n + b
end
println([A094588(n) for n in 0:34]) # Peter Luschny, May 16 2022
-
[n*Fibonacci(n-1)+Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
-
CoefficientList[Series[x (1+x-2x^2)/(1-x-x^2)^2,{x,0,40}],x] (* Harvey P. Dale, Apr 16 2011 *)
-
Vec((1+x-2*x^2)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04 2012
A022101
Fibonacci sequence beginning 1, 11.
Original entry on oeis.org
1, 11, 12, 23, 35, 58, 93, 151, 244, 395, 639, 1034, 1673, 2707, 4380, 7087, 11467, 18554, 30021, 48575, 78596, 127171, 205767, 332938, 538705, 871643, 1410348, 2281991, 3692339, 5974330, 9666669, 15640999, 25307668, 40948667, 66256335, 107205002, 173461337, 280666339
Offset: 0
A117501
Triangle generated from an array of generalized Fibonacci-like terms.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 4, 4, 5, 5, 1, 5, 5, 7, 8, 8, 1, 6, 6, 9, 11, 13, 13, 1, 7, 7, 11, 14, 18, 21, 21, 1, 8, 8, 13, 17, 23, 29, 34, 34, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89, 1, 11, 11, 19, 26, 38, 53, 73, 97, 123, 144, 144
Offset: 1
First few rows of the array T(n,k) are:
k=1 k=2 k=3 k=4 k=5 k=6
n=1: 1, 1, 2, 3, 5, 8, ...
n=2: 1, 2, 3, 5, 8, 13, ...
n=3: 1, 3, 4, 7, 11, 18, ...
n=4: 1, 4, 5, 9, 14, 23, ...
n=5: 1, 5, 6, 11, 17, 28, ...
First few rows of the triangle are:
1;
1, 1;
1, 2, 2;
1, 3, 3, 3;
1, 4, 4, 5, 5;
1, 5, 5, 7, 8, 8;
1, 6, 6, 9, 11, 13, 13;
1, 7, 7, 11, 14, 18, 21, 21; ...
-
F:=Fibonacci;; Flat(List([1..15], n-> List([1..n], k-> (n-k+1)*F(k-1) + F(k-2) ))); # G. C. Greubel, Jul 13 2019
-
F:=Fibonacci; [(n-k+1)*F(k-1) + F(k-2): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
-
a[n_, k_] := a[n, k] = If[k==1, 1, If[k==2, n, a[n, k-1] + a[n, k-2]]]; Table[a[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 15 2017 *)
T[n_, k_]:= n*Fibonacci[k-1] + Fibonacci[k-2]; Table[T[n-k+1, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
-
T(n,k) = n*fibonacci(k-1) + fibonacci(k-2);
for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 13 2019
-
from sympy.core.cache import cacheit
@cacheit
def a(n, k):
return 1 if k==1 else n if k==2 else a(n, k - 1) + a(n, k - 2)
for n in range(1, 21): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Aug 19 2017
-
f=fibonacci; [[(n-k+1)*f(k-1) + f(k-2) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
A022102
Fibonacci sequence beginning 1, 12.
Original entry on oeis.org
1, 12, 13, 25, 38, 63, 101, 164, 265, 429, 694, 1123, 1817, 2940, 4757, 7697, 12454, 20151, 32605, 52756, 85361, 138117, 223478, 361595, 585073, 946668, 1531741, 2478409, 4010150, 6488559, 10498709
Offset: 0
-
a0:=1; a1:=12; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
-
LinearRecurrence[{1,1},{1,12},40] (* Harvey P. Dale, Jan 23 2012 *)
-
a(n) = if(n==0, 1, if(n==1, 12, a(n-1)+a(n-2))) \\ Felix Fröhlich, Jun 09 2022
-
Vec((1+11*x)/(1-x-x^2) + O(x^20)) \\ Felix Fröhlich, Jun 09 2022
Comments