cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 55 results. Next

A344619 The a(n)-th composition in standard order (A066099) has alternating sum 0.

Original entry on oeis.org

0, 3, 10, 13, 15, 36, 41, 43, 46, 50, 53, 55, 58, 61, 63, 136, 145, 147, 150, 156, 162, 165, 167, 170, 173, 175, 180, 185, 187, 190, 196, 201, 203, 206, 210, 213, 215, 218, 221, 223, 228, 233, 235, 238, 242, 245, 247, 250, 253, 255, 528, 545, 547, 550, 556, 568
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
    0: ()
    3: (1,1)
   10: (2,2)
   13: (1,2,1)
   15: (1,1,1,1)
   36: (3,3)
   41: (2,3,1)
   43: (2,2,1,1)
   46: (2,1,1,2)
   50: (1,3,2)
   53: (1,2,2,1)
   55: (1,2,1,1,1)
   58: (1,1,2,2)
   61: (1,1,1,2,1)
   63: (1,1,1,1,1,1)
  136: (4,4)
  145: (3,4,1)
  147: (3,3,1,1)
  150: (3,2,1,2)
  156: (3,1,1,3)
		

Crossrefs

The version for Heinz numbers of partitions is A000290, counted by A000041.
These are the positions of zeros in A344618.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >= 0.
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344616 gives the alternating sum of reversed prime indices.
All of the following pertain to compositions in standard order:
- The length is A000120.
- Converting to reversed ranking gives A059893.
- The rows are A066099.
- The sum is A070939.
- The runs are counted by A124767.
- The reversed version is A228351.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- The Heinz number is A333219.
- Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]
    Select[Range[0,100],ats[stc[#]]==0&]

A345197 Concatenation of square matrices A(n), each read by rows, where A(n)(k,i) is the number of compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 0, 0, 3, 4, 3, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The matrices for n = 1..7:
  1   0 1   0 0 1   0 0 0 1   0 0 0 0 1   0 0 0 0 0 1   0 0 0 0 0 0 1
      1 0   1 1 0   1 1 1 0   1 1 1 1 0   1 1 1 1 1 0   1 1 1 1 1 1 0
            0 1 0   0 1 2 0   0 1 2 3 0   0 1 2 3 4 0   0 1 2 3 4 5 0
                    0 1 0 0   0 2 2 0 0   0 3 4 3 0 0   0 4 6 6 4 0 0
                              0 0 1 0 0   0 0 2 3 0 0   0 0 3 6 6 0 0
                                          0 0 1 0 0 0   0 0 3 3 0 0 0
                                                        0 0 0 1 0 0 0
Matrix n = 5 counts the following compositions:
           i=-3:        i=-1:          i=1:            i=3:        i=5:
        -----------------------------------------------------------------
   k=1: |    0            0             0               0          (5)
   k=2: |   (14)         (23)          (32)            (41)         0
   k=3: |    0          (131)       (221)(122)   (311)(113)(212)    0
   k=4: |    0       (1211)(1112)  (2111)(1121)         0           0
   k=5: |    0            0          (11111)            0           0
		

Crossrefs

The number of nonzero terms in each matrix appears to be A000096.
The number of zeros in each matrix appears to be A000124.
Row sums and column sums both appear to be A007318 (Pascal's triangle).
The matrix sums are A131577.
Antidiagonal sums appear to be A163493.
The reverse-alternating version is also A345197 (this sequence).
Antidiagonals are A345907.
Traces are A345908.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Other tetrangles: A318393, A318816, A320808, A321912.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==k&&ats[#]==i&]],{n,0,6},{k,1,n},{i,-n+2,n,2}]

A344611 Number of integer partitions of 2n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 2, 4, 8, 15, 27, 48, 81, 135, 220, 352, 553, 859, 1313, 1986, 2969, 4394, 6439, 9357, 13479, 19273, 27353, 38558, 53998, 75168, 104022, 143172, 196021, 267051, 362086, 488733, 656802, 879026, 1171747, 1555997, 2058663, 2714133, 3566122, 4670256, 6096924, 7935184
Offset: 0

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of 2n with alternating sum >= 0.
The reverse-alternating sum of a partition is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of partitions of 2n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of partitions of 2n whose parts are all even or whose greatest part is odd.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)   (4)     (6)       (8)
      (11)  (22)    (33)      (44)
            (211)   (222)     (332)
            (1111)  (321)     (422)
                    (411)     (431)
                    (2211)    (521)
                    (21111)   (611)
                    (111111)  (2222)
                              (3311)
                              (22211)
                              (32111)
                              (41111)
                              (221111)
                              (2111111)
                              (11111111)
		

Crossrefs

The non-reversed version is A058696 (partitions of 2n).
The ordered version appears to be A114121.
Odd bisection of A344607.
Row sums of A344610.
The strict case is A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344612 counts partitions by sum and rev-alt sum (strict: A344739).
A344618 gives reverse-alternating sums of standard compositions.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30,2}]

Formula

Conjecture: a(n) <= A160786(n). The difference is 0, 0, 0, 0, 1, 2, 4, 9, 16, 28, 48, 79, ...

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A114121 Expansion of (sqrt(1 - 4*x) + (1 - 2*x))/(2*(1 - 4*x)).

Original entry on oeis.org

1, 2, 7, 26, 99, 382, 1486, 5812, 22819, 89846, 354522, 1401292, 5546382, 21977516, 87167164, 345994216, 1374282019, 5461770406, 21717436834, 86392108636, 343801171354, 1368640564996, 5450095992964, 21708901408216, 86492546019214
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Second binomial transform of A032443 with interpolated zeros.
a(n) is the total number of lattice points, taken over all Dyck n-paths (A000108), that (i) lie on or above ground level and (ii) lie on or directly below a peak. For example with n = 2, UUDD has 1 peak contributing 3 lattice points--(2, 0), (2, 1) and (2, 2) when the path starts at the origin--and UDUD has 2 peaks, each contributing 2 lattice points and so a(2) = 3 + 4 = 7. - David Callan, Jul 14 2006
Hankel transform is binomial(n + 2, 2). - Paul Barry, Dec 04 2007
Image of (-1)^n under the Riordan array ((1/2)(1/(1 - 4x) + 1/sqrt(1 - 4x)), c(x) - 1), c(x) the g.f. of A000108. - Paul Barry, Jun 15 2008
From Gus Wiseman, Jun 21 2021: (Start)
Also the even bisection of A116406 = number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(3) = 26 compositions are:
(6) (33) (114) (1122) (11112) (111111)
(42) (123) (1131) (11121)
(51) (132) (1221) (11211)
(213) (2112) (12111)
(222) (2121) (21111)
(231) (2211)
(312) (3111)
(321)
(411)
(End)

Examples

			G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 99*x^4 + 382*x^5 + 1486*x^6 + 5812*x^7 + ...
		

Crossrefs

The case of alternating sum = 0 is A001700.
The case of alternating sum < 0 is A008549.
This is the even bisection of A116406.
The restriction to reversed partitions is A344611.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    seq(sum(binomial(2*n,2*k+irem(n,2)),k=0..floor((1/2)*n)),n=0..20)
    seq(binomial(2*n-1,n)+4^(n-1)-(1/4)*0^n,n=0..20)
  • Mathematica
    a[ n_] := SeriesCoefficient[((1 + 1/Sqrt[1 - 4 x])/2)^2, {x, 0, n}] (* Michael Somos, Dec 31 2013 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15,2}] (* Gus Wiseman, Jun 21 2021 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*2^(n-k-2)*(2^k + C(k, k/2))*(1 + (-1)^k).
a(n) = (A000984(n) + A081294(n))/2.
From Paul Barry, Jun 15 2008: (Start)
G.f.: (1 - 4*x + (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - 4*x)^(3/2)).
a(n) = Sum_{k=0..n} ( Sum_{j=0..n} C(2*n, n-k-j)*(-1)^j ). (End)
a(n) = Sum_{k=0..n} C(2*n, n-k)*(1 + (-1)^k)/2. - Paul Barry, Aug 06 2009
From Paul Barry, Sep 07 2009: (Start)
a(n) = C(2*n-1, n-1) + (4^n + 3*0^n)/4.
Integral representation a(n) = (1/(2*pi))*(Integral_{x=0..4} x^n/sqrt(x(4 - x))) + (4^n + 0^n)/4. (End)
a(n) = Sum_{k=0..floor(n/2)} C(2*n, 2*k + (n mod 2)). - Mircea Merca, Jun 21 2011
Conjecture: n*a(n) + 2*(3 - 4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 07 2012
Conjecture verified using the differential equation (16*x^2-8*x+1)*g'(x) + (8*x-2)*g(x)-2*x=0 satisfied by the G.f. - Robert Israel, Jul 27 2020
a(n) = Sum_{i=0..n} (sum_{j=0..n} binomial(n, i+j)*binomial(n, j-i)). - Yalcin Aktar, Jan 07 2013.
G.f.: (1 + (1 - 4*x)^(-1/2))^2 / 4. Convolution square of A088218. - Michael Somos, Dec 31 2013
0 = (1 + 2*n)*b(n) - (5 + 4*n)*b(n+1) + (4 + 2*n)*b(n+2) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
0 = b(n+3) * (2*b(n+2) - 7*b(n+1) + 5*b(n)) + b(n+2) * (-b(n+2) + 7*b(n+1) - 7*b(n)) + b(n+1) * (-b(n+1) + 2*b(n)) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
For n > 0, a(n) = 2^(2n-1) - A008549(n). - Gus Wiseman, Jun 27 2021
a(n) = [x^n] 1/((1-2*x) * (1-x)^(n-1)). - Seiichi Manyama, Apr 10 2024

A294175 a(n) = 2^(n-1) + ((1+(-1)^n)/4)*binomial(n, n/2) - binomial(n, floor(n/2)).

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 22, 29, 93, 130, 386, 562, 1586, 2380, 6476, 9949, 26333, 41226, 106762, 169766, 431910, 695860, 1744436, 2842226, 7036530, 11576916, 28354132, 47050564, 114159428, 190876696, 459312152, 773201629, 1846943453, 3128164186, 7423131482
Offset: 0

Views

Author

Enrique Navarrete, Feb 10 2018

Keywords

Comments

Number of subsets of {1,2,...,n} that contain more even than odd numbers.
Note that A058622 counts the nonempty subsets of {1,2,...,n} that contain more odd than even numbers.
From Gus Wiseman, Jul 22 2021: (Start)
Also the number of integer compositions of n + 1 with alternating sum < 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(0) = 0 through a(6) = 6 compositions (empty columns indicated by dots) are:
. . (12) (13) (14) (15)
(23) (24)
(131) (141)
(1112) (1113)
(1211) (1212)
(1311)
Also the number of integer compositions of n + 1 with reverse-alternating sum < 0. For a bijection, keep the odd-length compositions and reverse the even-length ones.
Also the number of (n+1)-digit binary numbers with more 0's than 1's. For example, the a(0) = 0 through a(5) = 6 binary numbers are:
. . 100 1000 10000 100000
10001 100001
10010 100010
10100 100100
11000 101000
110000
(End)
2*a(n) is the number of all-positive pinnacle sets that are admissible in the group S_{n+1}^B of signed permutations, but not admissible in S_{n+1}. - Bridget Tenner, Jan 06 2023

Examples

			For example, for n=5, a(5)=6 and the 6 subsets are {2}, {4}, {2,4}, {1,2,4}, {2,3,4}, {2,4,5}.
		

Crossrefs

The even bisection is A000346.
The odd bisection is A008549.
The following relate to compositions of n + 1 with alternating sum k < 0.
- The k = 1 version is A000984, ranked by A345909/A345911.
- The opposite (k > 0) version is A027306, ranked by A345917/A345918.
- The weak (k <= 0) version A058622, ranked by A345915/A345916.
- The k != 0 version is also A058622, ranked by A345921.
- The complement (k >= 0) is counted by A116406, ranked by A345913/A345914.
- The k = 0 version is A138364, ranked by A344619.
- The unordered version is A344608, ranked by A119899.
- Ranked by A345919 (reverse: A345920).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A101211 lists run-lengths in binary expansion (reverse: A227736).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.

Programs

  • Maple
    f:= gfun:-rectoproc({(8+8*n)*a(n)+(4*n+16)*a(1+n)+(-20-6*n)*a(n+2)+(-5-n)*a(n+3)+(5+n)*a(n+4), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1}, a(n), remember):
    map(f, [$0..40]); # Robert Israel, Feb 12 2018
  • Mathematica
    f[n_] := 2^(n - 1) + ((1 + (-1)^n)/4) Binomial[n, n/2] - Binomial[n, Floor[n/2]]; Array[f, 38, 0] (* Robert G. Wilson v, Feb 10 2018 *)
    Table[Length[Select[Tuples[{0,1},{n+1}],First[#]==1&&Count[#,0]>Count[#,1]&]],{n,0,10}] (* Gus Wiseman, Jul 22 2021 *)

Formula

From Robert Israel, Feb 12 2018: (Start)
G.f.: (x+1)*sqrt(1-4*x^2)/(2*x*(4*x^2-1))+(x-1)/(2*(2*x-1)*x).
D-finite with recurrence: (8+8*n)*a(n)+(4*n+16)*a(1+n)+(-20-6*n)*a(n+2)+(-5-n)*a(n+3)+(5+n)*a(n+4) = 0. (End)

A163493 Number of binary strings of length n which have the same number of 00 and 01 substrings.

Original entry on oeis.org

1, 2, 2, 3, 6, 9, 15, 30, 54, 97, 189, 360, 675, 1304, 2522, 4835, 9358, 18193, 35269, 68568, 133737, 260802, 509132, 995801, 1948931, 3816904, 7483636, 14683721, 28827798, 56637969, 111347879, 219019294, 431043814, 848764585, 1672056525, 3295390800, 6497536449
Offset: 0

Views

Author

Keywords

Comments

A variation of problem 11424 in the American Mathematical Monthly. Terms were brute-force calculated using Maple 10.
Proposed Problem 11610 in the Dec 2011 A.M.M.
From Gus Wiseman, Jul 27 2021: (Start)
Also the antidiagonal sums of the matrices counting integer compositions by length and alternating sum (A345197). So a(n) is the number of integer compositions of n + 1 of length (n - s + 3)/2, where s is the alternating sum of the composition. For example, the a(0) = 1 through a(6) = 7 compositions are:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (31) (41) (51) (61)
(121) (122) (123) (124)
(221) (222) (223)
(1112) (321) (322)
(1211) (1122) (421)
(1221) (1132)
(2112) (1231)
(2211) (2122)
(2221)
(3112)
(3211)
(11131)
(12121)
(13111)
For a bijection with the main (binary string) interpretation, take the run-lengths of each binary string of length n + 1 that satisfies the condition and starts with 1.
(End)

Examples

			1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 54*x^8 + 97*x^9 + ...
From _Gus Wiseman_, Jul 27 2021: (Start)
The a(0) = 1 though a(6) = 15 binary strings:
  ()  (0)  (1,0)  (0,0,1)  (0,0,1,0)  (0,0,1,1,0)  (0,0,0,1,0,1)
      (1)  (1,1)  (1,1,0)  (0,0,1,1)  (0,0,1,1,1)  (0,0,1,0,0,1)
                  (1,1,1)  (0,1,0,0)  (0,1,1,0,0)  (0,0,1,1,1,0)
                           (1,0,0,1)  (1,0,0,1,0)  (0,0,1,1,1,1)
                           (1,1,1,0)  (1,0,0,1,1)  (0,1,0,0,0,1)
                           (1,1,1,1)  (1,0,1,0,0)  (0,1,1,1,0,0)
                                      (1,1,0,0,1)  (1,0,0,1,1,0)
                                      (1,1,1,1,0)  (1,0,0,1,1,1)
                                      (1,1,1,1,1)  (1,0,1,1,0,0)
                                                   (1,1,0,0,1,0)
                                                   (1,1,0,0,1,1)
                                                   (1,1,0,1,0,0)
                                                   (1,1,1,0,0,1)
                                                   (1,1,1,1,1,0)
                                                   (1,1,1,1,1,1)
(End)
		

Crossrefs

Antidiagonal sums of the matrices A345197.
Row sums of A345907.
Taking diagonal instead of antidiagonal sums gives A345908.
A011782 counts compositions (or binary strings).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Maple
    with(combinat): count := proc(n) local S, matches, A, k, i; S := subsets(\{seq(i, i=1..n)\}): matches := 0: while not S[finished] do A := S[nextvalue](): k := 0: for i from 1 to n-1 do: if not (i in A) and not (i+1 in A) then k := k + 1: fi: if not (i in A) and (i+1 in A) then k := k - 1: fi: od: if (k = 0) then matches := matches + 1: fi: end do; return(matches); end proc:
    # second Maple program:
    b:= proc(n, l, t) option remember; `if`(n-abs(t)<0, 0, `if`(n=0, 1,
          add(b(n-1, i, t+`if`(l=0, (-1)^i, 0)), i=0..1)))
        end:
    a:= n-> b(n, 1, 0):
    seq(a(n), n=0..36);  # Alois P. Heinz, Mar 20 2024
  • Mathematica
    a[0] = 1; a[n_] := Sum[Binomial[2*k - 1, k]*Binomial[n - 2*k, k] + Binomial[2*k, k]*Binomial[n - 2*k - 1, k], {k, 0, n/3}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 28 2017, after Joel B. Lewis *)
    Table[Length[Select[Tuples[{0,1},n],Count[Partition[#,2,1],{0,0}]==Count[Partition[#,2,1],{0,1}]&]],{n,0,10}] (* Gus Wiseman, Jul 27 2021 *)
    a[0]:=1; a[n_]:=(1 + 3*HypergeometricPFQ[{1/2, 1-3*n/8, (1-n)/3, (2-n)/3, -n/3},{1, (1-n)/2, 1-n/2, -3*n/8}, -27])/2; Array[a,37,0] (* Stefano Spezia, Apr 26 2024 *)
  • Python
    from math import comb
    def A163493(n): return 2+sum((x:=comb((k:=m<<1)-1,m)*comb(n-k,m))+(x*(n-3*m)<<1)//(n-k) for m in range(1,n//3+1)) if n else 1 # Chai Wah Wu, May 01 2024

Formula

G.f.: 1/2/(1-x) + (1+2*x)/2/sqrt((1-x)*(1-2*x)*(1+x+2*x^2)). - Richard Stanley, corrected Apr 29 2011
G.f.: (1 + sqrt( 1 + 4*x / ((1 - x) * (1 - 2*x) * (1 + x + 2*x^2)))) / (2*(1 - x)). - Michael Somos, Jan 30 2012
a(n) = sum( binomial(2*k-1, k)*binomial(n-2*k,k) + binomial(2*k, k)*binomial(n-2*k-1, k), k=0..floor(n/3)). - Joel B. Lewis, May 21 2011
Conjecture: -n*a(n) +(2+n)*a(n-1) +(3n-12)*a(n-2) +(12-n)*a(n-3) +(2n-18)*a(n-4)+(56-12n)*a(n-5) +(8n-40)*a(n-6)=0. - R. J. Mathar, Nov 28 2011
G.f. y = A(x) satisfies x = (1 - x) * (1 - 2*x) * (1 + x + 2*x^2) * y * (y * (1 - x) - 1). - Michael Somos, Jan 30 2012
Sequence a(n) satisfies 0 = a(n) * (n^2-2*n) + a(n-1) * (-3*n^2+8*n-2) + a(n-2) * (3*n^2-10*n+2) + a(n-3) * (-5*n^2+18*n-6) + a(n-4) * (8*n^2-34*n+22) + a(n-5) * (-4*n^2+20*n-16) except if n=1 or n=2. - Michael Somos, Jan 30 2012
a(n) = (1 + 3*hypergeom([1/2, 1-3*n/8, (1-n)/3, (2-n)/3, -n/3],[1, (1-n)/2, 1-n/2, -3*n/8],-27))/2 for n > 0. - Stefano Spezia, Apr 26 2024
a(n) ~ 2^n / sqrt(Pi*n). - Vaclav Kotesovec, Apr 26 2024

A119899 Integers i such that bigomega(i) (A001222) and tau(i) (A000005) are both even.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 33, 34, 35, 38, 39, 40, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 104, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 135, 136, 140, 141, 142, 143, 145, 146, 150
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

Also numbers whose alternating sum of prime indices is < 0. Equivalently, numbers with even bigomega whose conjugate prime indices are not all even. This is the intersection of A028260 and A000037. - Gus Wiseman, Jun 20 2021

Examples

			From _Gus Wiseman_, Jun 20 2021: (Start)
The sequence of terms together with their prime indices begins:
       6: {1,2}          51: {2,7}          86: {1,14}
      10: {1,3}          54: {1,2,2,2}      87: {2,10}
      14: {1,4}          55: {3,5}          88: {1,1,1,5}
      15: {2,3}          56: {1,1,1,4}      90: {1,2,2,3}
      21: {2,4}          57: {2,8}          91: {4,6}
      22: {1,5}          58: {1,10}         93: {2,11}
      24: {1,1,1,2}      60: {1,1,2,3}      94: {1,15}
      26: {1,6}          62: {1,11}         95: {3,8}
      33: {2,5}          65: {3,6}          96: {1,1,1,1,1,2}
      34: {1,7}          69: {2,9}         104: {1,1,1,6}
      35: {3,4}          74: {1,12}        106: {1,16}
      38: {1,8}          77: {4,5}         111: {2,12}
      39: {2,6}          82: {1,13}        115: {3,9}
      40: {1,1,1,3}      84: {1,1,2,4}     118: {1,17}
      46: {1,9}          85: {3,7}         119: {4,7}
(End)
		

Crossrefs

Superset: A119847. Subset: A006881. The intersection of A028260 and A000037.
Positions of negative terms in A316524.
The partitions with these Heinz numbers are counted by A344608.
Complement of A344609.

Programs

  • Mathematica
    Select[Range[200],And@@EvenQ[{PrimeOmega[#],DivisorSigma[0,#]}]&] (* Harvey P. Dale, Jan 24 2013 *)

A344609 Numbers whose alternating sum of prime indices is >= 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 30, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 102, 103, 105, 107
Offset: 1

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

Also Heinz numbers of partitions whose reverse-alternating sum is >= 0. These are partitions whose conjugate parts are all even or whose length is odd.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            20: {1,1,3}         45: {2,2,3}
      2: {1}           23: {9}             47: {15}
      3: {2}           25: {3,3}           48: {1,1,1,1,2}
      4: {1,1}         27: {2,2,2}         49: {4,4}
      5: {3}           28: {1,1,4}         50: {1,3,3}
      7: {4}           29: {10}            52: {1,1,6}
      8: {1,1,1}       30: {1,2,3}         53: {16}
      9: {2,2}         31: {11}            59: {17}
     11: {5}           32: {1,1,1,1,1}     61: {18}
     12: {1,1,2}       36: {1,1,2,2}       63: {2,2,4}
     13: {6}           37: {12}            64: {1,1,1,1,1,1}
     16: {1,1,1,1}     41: {13}            66: {1,2,5}
     17: {7}           42: {1,2,4}         67: {19}
     18: {1,2,2}       43: {14}            68: {1,1,7}
     19: {8}           44: {1,1,5}         70: {1,3,4}
For example, the prime indices of 70 are {1,3,4} with alternating sum 1 - 3 + 4 = 2, so 70 is in the sequence. On the other hand, the prime indices of 24 are {1,1,1,2} with alternating sum 1 - 1 + 1 - 2 = -1, so 24 is not in the sequence.
		

Crossrefs

The opposite (nonpositive) version is A028260, counted by A027187.
The strict case (n > 0) is counted by A067659, odd bisection A344650.
Permutations of prime indices of these terms are counted by A116406.
Complement of A119899, Heinz numbers of the partitions counted by A344608.
Positions of nonnegative terms in A316524 or A344617.
Heinz numbers of the partitions counted by A344607.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],ats[primeMS[#]]>=0&]

A345910 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum -1.

Original entry on oeis.org

6, 20, 25, 27, 30, 72, 81, 83, 86, 92, 98, 101, 103, 106, 109, 111, 116, 121, 123, 126, 272, 289, 291, 294, 300, 312, 322, 325, 327, 330, 333, 335, 340, 345, 347, 350, 360, 369, 371, 374, 380, 388, 393, 395, 398, 402, 405, 407, 410, 413, 415, 420, 425, 427
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      6: (1,2)
     20: (2,3)
     25: (1,3,1)
     27: (1,2,1,1)
     30: (1,1,1,2)
     72: (3,4)
     81: (2,4,1)
     83: (2,3,1,1)
     86: (2,2,1,2)
     92: (2,1,1,3)
     98: (1,4,2)
    101: (1,3,2,1)
    103: (1,3,1,1,1)
    106: (1,2,2,2)
    109: (1,2,1,2,1)
		

Crossrefs

These compositions are counted by A001791.
A version using runs of binary digits is A031444.
These are the positions of -1's in A124754.
The opposite (positive 1) version is A345909.
The reverse version is A345912.
The version for alternating sum of prime indices is A345959.
Standard compositions: A000120, A066099, A070939, A124754, A228351, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions of 2n+1 with alternating sum 1, ranked by A001105.
A011782 counts compositions.
A097805 counts compositions by sum and alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[stc[#]]==-1&]

A345912 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum -1.

Original entry on oeis.org

5, 18, 23, 25, 29, 68, 75, 78, 81, 85, 90, 95, 98, 103, 105, 109, 114, 119, 121, 125, 264, 275, 278, 284, 289, 293, 298, 303, 308, 315, 318, 322, 327, 329, 333, 338, 343, 345, 349, 356, 363, 366, 369, 373, 378, 383, 388, 395, 398, 401, 405, 410, 415, 418, 423
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
      5: (2,1)
     18: (3,2)
     23: (2,1,1,1)
     25: (1,3,1)
     29: (1,1,2,1)
     68: (4,3)
     75: (3,2,1,1)
     78: (3,1,1,2)
     81: (2,4,1)
     85: (2,2,2,1)
     90: (2,1,2,2)
     95: (2,1,1,1,1,1)
     98: (1,4,2)
    103: (1,3,1,1,1)
    105: (1,2,3,1)
		

Crossrefs

These compositions are counted by A001791.
These are the positions of -1's in A344618.
The non-reverse version is A345910.
The opposite (positive 1) version is A345911.
The version for Heinz numbers of partitions is A345959.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A011782 counts compositions.
A097805 counts compositions by alternating or reverse-alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]==-1&]
Previous Showing 11-20 of 55 results. Next