cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A081714 a(n) = F(n)*L(n+1) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

0, 3, 4, 14, 33, 90, 232, 611, 1596, 4182, 10945, 28658, 75024, 196419, 514228, 1346270, 3524577, 9227466, 24157816, 63245987, 165580140, 433494438, 1134903169, 2971215074, 7778742048, 20365011075, 53316291172, 139583862446, 365435296161, 956722026042
Offset: 0

Views

Author

Ralf Stephan, Apr 03 2003

Keywords

Comments

Also convolution of Fibonacci and Lucas numbers.
For n>2, a(n) represents twice the area of the triangle created by the three points (L(n-3), L(n-2)), (L(n-1), L(n)) and (F(n+3), F(n+2)) where L(k)=A000032(k) and F(k)=A000045(k). - J. M. Bergot, May 20 2014
For n>1, a(n) is the remainder when F(n+3)*F(n+4) is divided by F(n+1)*F(n+2). - J. M. Bergot, May 24 2014

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(n)*(Fibonacci(n+2)+Fibonacci(n))); # G. C. Greubel, Jan 07 2019
  • Magma
    [Fibonacci(n)*Lucas(n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2012
    
  • Maple
    with(combinat): F:=n-> fibonacci(n): L:= n-> F(n+1)+F(n-1):
    a:= n-> F(n)*L(n+1): seq(a(n), n=0..30);
  • Mathematica
    Fibonacci[Range[0,50]]*LucasL[Range[0,50]+1] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
  • PARI
    my(x='x+O('x^51));for(n=0,50,print1(polcoeff(serconvol(Ser((1+2*x)/(1-x-x*x)),Ser(x/(1-x-x*x))),n)", "))
    
  • PARI
    a(n)=fibonacci(n)*(fibonacci(n+2)+fibonacci(n))
    
  • PARI
    a(n) = round((-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016
    
  • Sage
    [fibonacci(n)*(fibonacci(n+2)+fibonacci(n)) for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

G.f.: x*(3-2*x)/((1+x)*(1-3*x+x^2)).
a(n) = A122367(n) - (-1)^n. - R. J. Mathar, Jul 23 2010
a(n) = (L(n+1)^2 - F(2*n+2))/2 = ( A001254(n+1) - A001906(n+1) )/2. - Gary Detlefs, Nov 28 2010
a(n+1) = - A186679(2*n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A035513(1,n-1)*A035513(2,n-1). - R. J. Mathar, Sep 04 2016
a(n)+a(n+1) = A005248(n+1). - R. J. Mathar, Sep 04 2016
a(n) = (-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016

Extensions

Simpler definition from Michael Somos, Mar 16 2004

A122369 Dimension of 5-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 5 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 4, 19, 93, 459, 2273, 11274, 55964, 277924, 1380527, 6858356, 34074280, 169297743, 841173845, 4179517118, 20766807551, 103184684826, 512698227699, 2547469553647, 12657750705603, 62893284231103, 312501512711984, 1552744642741738, 7715214279423070
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			a(1) = 4 because x1-x2, x2-x3, x3-x4, x4-x5 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5.
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-6*q+11*q^2-6*q^3)/(1-10*q+32*q^2-37*q^3+11*q^4),q,30),`+`)-O(q^30),q);
  • Mathematica
    gf = With[{n = 5}, Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/Sum[ q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]]; CoefficientList[gf + O[q]^22, q] (* Jean-François Alcover, Nov 17 2018 *)

Formula

G.f. (1-6*q+11*q^2-6*q^3)/(1-10*q+32*q^2-37*q^3+11*q^4) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=5.

A099496 a(n) = (-1)^n * Fibonacci(2*n+1).

Original entry on oeis.org

1, -2, 5, -13, 34, -89, 233, -610, 1597, -4181, 10946, -28657, 75025, -196418, 514229, -1346269, 3524578, -9227465, 24157817, -63245986, 165580141, -433494437, 1134903170, -2971215073, 7778742049, -20365011074, 53316291173, -139583862445, 365435296162, -956722026041
Offset: 0

Views

Author

Paul Barry, Oct 19 2004

Keywords

Comments

With interpolated zeros, a Chebyshev transform of A056594, which has g.f. 1/(1+x^2). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).
a(n) is the ceiling of the inverse fractional error in approximating phi, the golden section, by the ratio of two successive terms in the Fibonacci series. - Adam Helman (helman(AT)san.rr.com), May 09 2010

Examples

			a(3) = (-1)^3 * Fibonacci(2 * 3 + 1) = -Fibonacci(7) = -13. - _Indranil Ghosh_, Feb 04 2017
		

Crossrefs

Programs

  • Magma
    [(-1)^n*Fibonacci(2*n+1): n in [0..40]]; // Vincenzo Librandi, Jul 04 2015
  • Maple
    seq((-1)^n*combinat:-fibonacci(2*n+1), n=0 .. 100); # Robert Israel, Jul 02 2015
  • Mathematica
    Table[(-1)^n Fibonacci[2 n + 1], {n, 0, 30}] (* Harvey P. Dale, Aug 22 2016 *)

Formula

G.f.: (1+x)/(1+3x+x^2).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*cos((n-2k)*Pi/2) (with interpolated zeros);
a(n) = Fibonacci(n+1)(-1)^(n/2)(1 + (-1)^n)/2 (with interpolated zeros).
a(n) = -3*a(n-1) - a(n-2), a(0)=1, a(1)=-2. - Philippe Deléham, Nov 03 2008
From Adam Helman (helman(AT)san.rr.com), May 09 2010: (Start)
a(n) = ceiling( phi / (Fibonacci(n+1)/Fibonacci(n) - phi) ).
An exact expression for the inverse fractional error is phi / (Fibonacci(n+1)/Fibonacci(n) - phi) = (phi/sqrt(5)) * ((-1)^n *(phi^2n) - 1). (End)
a(n) = (-1)^n*A122367(n). - R. J. Mathar, Jul 23 2010

A122368 Dimension of 4-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 4 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 3, 11, 42, 162, 627, 2430, 9423, 36549, 141777, 549990, 2133594, 8276985, 32109534, 124565121, 483235875, 1874657763, 7272519066, 28212902154, 109448714619, 424593725526, 1647162628047, 6389978382405, 24789187818585
Offset: 1

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Comments

Empirical: a(n) is the sum of the greatest elements over all lexicographically greatest elements in all partitions in the canonical basis of the Temperley-Lieb algebra of order n. - John M. Campbell, Oct 17 2017

Examples

			a(1) = 3 because x1-x2, x2-x3, x3-x4 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4
For example, the canonical basis of the Temperley-Lieb algebra of order 3 is {{{-3, 1}, {-2, -1}, {2, 3}}, {{-3, 3}, {-2, 2}, {-1, 1}}, {{-3, 3}, {-2, -1}, {1, 2}}, {{-3, -2}, {-1, 1}, {2, 3}}, {{-3, -2}, {-1, 3}, {1, 2}}}, and the lexicographically greatest elements among all partitions in this basis are {2, 3}, {-1, 1}, {1, 2}, {2, 3}, and {1, 2}, with a(3) = 3+1+2+3+2 = 11. - _John M. Campbell_, Oct 17 2017
		

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-3*q+2*q^2)/(1-6*q+9*q^2-3*q^3),q,30),`+`)-O(q^30),q);
  • Mathematica
    LinearRecurrence[{6, -9, 3}, {1, 3, 11}, 24] (* Jean-François Alcover, Sep 22 2017 *)

Formula

O.g.f.: (1-3*q+2*q^2)/(1-6*q+9*q^2-3*q^3) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=4

A122391 Dimension of 2-variable non-commutative harmonics (Hausdorff derivative). The dimension of the space of non-commutative polynomials in 2 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( w ) = sum over all subwords of w deleting xi once).

Original entry on oeis.org

1, 1, 1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888, 25769803776
Offset: 0

Views

Author

Mike Zabrocki, Aug 31 2006

Keywords

Comments

Except for first couple of terms, series agrees with A003945.
a(n) written in base 2: a(0) = 1, a(1) = 1, a(2) = 1, a(n) for n >= 3: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-3) times 0 (see A003953(n-2)). - Jaroslav Krizek, Aug 17 2009
For n>=2, a(n) equals the numbers of words of length n-2 on alphabet {0,1,2} containing no subwords 00, 11 and 22. - Milan Janjic, Jan 31 2015
Also the number of compositions of n whose first or last part is equal to 1, for n >= 1. - Peter Luschny, Jan 29 2024

Examples

			a(1) = 1 because x1 - x2 is killed by d_x1 + d_x2.
a(2) = 1 because x1 x2 - x2 x1 is killed by d_x1+d_x2, d_x1^2 + d_x2^2.
a(3) = 3 because x1 x1 x2 - 2 x1 x2 x1 + x2 x1 x1, x1 x2 x2 - 2 x2 x1 x2 + x2 x2 x1, x1 x1 x2 - x1 x2 x1 - x2 x1 x2 + x2 x2 x1 are all killed by d_x1 + d_x2, d_x1^2 + d_x2^2, d_x1 d_x2, d_x1^3 + d_x2^3 and d_x1^2 d_x2 + d_x1 d_x2^2.
From _Peter Luschny_, Jan 29 2024: (Start)
Compositions of n with 1 in the first or the last slot.
 1: [1];
 2: [1, 1];
 3: [1, 1, 1], [1, 2], [2, 1];
 4: [1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [3, 1];
 5: [1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 1], [1, 1, 3], [1, 2, 1, 1], [1, 2, 2], [1, 3, 1], [1, 4], [2, 1, 1, 1], [2, 2, 1], [3, 1, 1], [4, 1].
(End)
		

References

  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-q)*(1-q^2)/(1-2*q),q,20),`+`)-O(q^20),q);
  • Mathematica
    Table[Ceiling[2^(n-2)] + Floor[2^(n-3)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)

Formula

G.f.: (1-q)*(1-q^2)/(1-2*q).
a(n) = 2^n - 2^(n-1) - 2^(n-2) + 2^(n-3) (for n > 2).
a(0) = 1, a(1) = 1, a(2) = 1, a(n) = 3*2^(n-3) for n > 2.
a(n) = 3*2^(n-3) = 2^(n-3) + 2^(n-2) for n >= 3. - Jaroslav Krizek, Aug 17 2009
a(n) = ceiling(2^(n-2)) + floor(2^(n-3)). - Martin Grymel, Oct 17 2012
E.g.f.: (5 + 3*exp(2*x) + 2*x - 2*x^2)/8. - Stefano Spezia, Jan 26 2025

Extensions

More terms from Michel Marcus, Jan 26 2025

A094865 Expansion of x^3/((1-3*x+x^2)*(1-5*x+5*x^2)).

Original entry on oeis.org

0, 0, 0, 1, 8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, 8844448, 32256553, 117378336, 426440955, 1547491404, 5610955132, 20332248992, 73645557469, 266668876540, 965384509651, 3494279574288, 12646311635088, 45764967830976, 165605867248465
Offset: 0

Views

Author

Herbert Kociemba, Jun 15 2004

Keywords

Comments

With a different offset, number of sequences (s(0), s(1), ..., s(2k+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2k+1, with s(0) = 1 and s(2n+1) = 8.

Crossrefs

Cf. A005024 is a truncated version.

Programs

  • Mathematica
    CoefficientList[Series[x^3/((1-3x+x^2)(1-5x+5x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-21,20,-5},{0,0,0,1},30] (* Harvey P. Dale, Jun 07 2014 *)
  • PARI
    x='x+O('x^66); concat([0,0,0],Vec(x^3/((1-3*x+x^2)*(1-5*x+5*x^2)))) \\ Joerg Arndt, May 01 2013

Formula

a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(4*r*Pi/5)*(2*cos(r*Pi/10))^(2*n+1).
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4).
a(n) = A093129(n)/2 - A122367(n)/2. - R. J. Mathar, Jun 24 2011
a(n) = 2^(-2-n)*(-(3-sqrt(5))^n*(-1+sqrt(5)) + (5-sqrt(5))^n*(1+sqrt(5)) - (1+sqrt(5))*(3+sqrt(5))^n + (-1+sqrt(5))*(5+sqrt(5))^n)/sqrt(5). - Colin Barker, Apr 27 2016

Extensions

Edited by N. J. A. Sloane, Aug 09 2008

A122370 Dimension of 6-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 6 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 5, 29, 172, 1026, 6134, 36712, 219847, 1316963, 7890594, 47282065, 283344410, 1698058817, 10176618298, 60990528210, 365532989831, 2190756912988, 13129979193808, 78692862940748, 471636719623539
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			a(1) = 5 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6.
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-10*q+35*q^2-50*q^3+24*q^4)/ (1-15*q+81*q^2 -192*q^3+189*q^4 -53*q^5),q,20), `+`) -O(q^20),q)
  • Mathematica
    LinearRecurrence[{15, -81, 192, -189, 53}, {1, 5, 29, 172, 1026}, 20] (* Jean-François Alcover, Sep 22 2017 *)

Formula

o.g.f. (1-10*q+35*q^2-50*q^3+24*q^4) / (1-15*q+81*q^2 -192*q^3+189*q^4 -53*q^5) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n) / sum( q^d/prod((1-r*q),r=1..d), d=0..n) where n=6.

A122371 Dimension of 7-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 7 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 6, 41, 285, 1989, 13901, 97215, 680079, 4758408, 33297267, 233014444, 1630701426, 11412409945, 79870754268, 558989013403, 3912210491549, 27380636068267, 191631324294463, 1341190961828143, 9386756237545989
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			a(1) = 6 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-15*q+ 85*q^2-225*q^3+274*q^4-120*q^5) / (1-21*q+170*q^2-669*q^3+1314*q^4-1157*q^5+309*q^6),q,20),`+`)-O(q^20),q);
  • Mathematica
    LinearRecurrence[{21, -170, 669, -1314, 1157, -309}, {1, 6, 41, 285, 1989, 13901}, 20] (* Jean-François Alcover, Sep 22 2017 *)

Formula

G.f.: (1-15*q+ 85*q^2-225*q^3+274*q^4-120*q^5) / (1-21*q+170*q^2-669*q^3 +1314*q^4-1157*q^5 +309*q^6) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n)/sum( q^d/prod((1-r*q), r=1..d), d=0..n) where n=7.

A122372 Dimension of 8-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 8 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 7, 55, 438, 3498, 27962, 223604, 1788406, 14305102, 114429193, 915366442, 7322521512, 58577537621, 468602617723, 3748697751384, 29988696932490, 239903055854075, 1919175464438065, 15353030007717639, 122821355074655309
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			A122371 a(1) = 7 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7, x7-x8 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
		

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7), q,20),`+`)-O(q^20),q);
  • Mathematica
    n = 8; gf = Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/ Sum[q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}] + O[q]^20;
    CoefficientList[gf, q] (* Jean-François Alcover, Dec 03 2018 *)

Formula

G.f.: (1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n) / sum( q^d/prod((1-r*q), r=1..d), d=0..n) where n=8.

A188648 Binomial sums a(n) = Sum_{k=0..n} (binomial(2n-k,k))^2.

Original entry on oeis.org

1, 2, 11, 63, 376, 2317, 14545, 92512, 594169, 3844787, 25027296, 163701327, 1075049011, 7083830648, 46812088751, 310118453573, 2058919125662, 13695571200353, 91254952276859, 608960974528058, 4069232436916151
Offset: 0

Views

Author

Emanuele Munarini, Apr 07 2011

Keywords

Comments

Central coefficients of A172991.
Bisection of A051286 (Whitney number of level n of the lattice of the ideals of the fence of order 2n). - Paul D. Hanna, Apr 07 2011

Crossrefs

Sum_{k=0..n} (binomial(2n-k,k))^b: A122367(n) = A001519(n+1) (b=1), this sequence (b=2).

Programs

  • Mathematica
    Table[Sum[Binomial[2n-k,k]^2,{k,0,n}],{n,0,20}]
    Table[DifferenceRoot[Function[{y, m}, {4 (-m + n)^2 (-1 - 2 m + 2 n)^2 y[m] + (-5 m^2 - 18 m^3 - 17 m^4 + 12 m n + 56 m^2 n + 68 m^3 n - 8 n^2 - 56 m n^2 - 100 m^2 n^2 + 16 n^3 + 64 m n^3 - 16 n^4) y[1 + m] + (1 + m)^2 (-m + 2 n)^2 y[2 + m] == 0, y[0] == 0, y[1] == 1}]][n + 1], {n, 0, 20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • Maxima
    makelist(sum(binomial(2*n-k,k)^2,k,0,n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n-k, k)^2)} \\ Seiichi Manyama, Jan 13 2019

Formula

G.f.: 1/2*(1/sqrt(1-2*sqrt(x)-x-2*x*sqrt(x)+x^2) + 1/sqrt(1+2*sqrt(x)-x+2*x*sqrt(x)+x^2)).
Recurrence: (n-2)*n*(2*n - 1)*(48*n^2 - 192*n + 169)*a(n) = (576*n^5 - 4032*n^4 + 10212*n^3 - 11414*n^2 + 5457*n - 849)*a(n-1) + 5*(2*n - 3)*(48*n^4 - 288*n^3 + 565*n^2 - 399*n + 64)*a(n-2) + (576*n^5 - 4608*n^4 + 13668*n^3 - 18286*n^2 + 10521*n - 1896)*a(n-3) - (n-3)*(n-1)*(2*n - 5)*(48*n^2 - 96*n + 25)*a(n-4). - Vaclav Kotesovec, Mar 02 2014
a(n) ~ phi^(4*n + 2) / (2^(3/2) * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2014, simplified Jan 13 2019
Conjecture: a(n) = hypergeom([-n,-n,n+1,n+1], [1/2,1/2,1], 1/16). - Velin Yanev, Oct 31 2019
a(n) = A051286(2*n). - Mark van Hoeij, Sep 05 2022
Previous Showing 11-20 of 37 results. Next