cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 465 results. Next

A206369 a(p^k) = p^k - p^(k-1) + p^(k-2) - ... +- 1, and then extend by multiplicativity.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 5, 7, 4, 10, 6, 12, 6, 8, 11, 16, 7, 18, 12, 12, 10, 22, 10, 21, 12, 20, 18, 28, 8, 30, 21, 20, 16, 24, 21, 36, 18, 24, 20, 40, 12, 42, 30, 28, 22, 46, 22, 43, 21, 32, 36, 52, 20, 40, 30, 36, 28, 58, 24, 60, 30, 42, 43, 48, 20, 66, 48, 44, 24, 70, 35
Offset: 1

Views

Author

N. J. A. Sloane, Feb 06 2012

Keywords

Comments

For more information see the Comments in A061020.
a(n) is the number of integers j such that 1 <= j <= n and gcd(n,j) is a perfect square. For example, a(12) = 6 because |{1,4,5,7,8,11}|=6 and the respective GCDs with 12 are 1,4,1,1,4,1, which are squares. - Geoffrey Critzer, Feb 16 2015
If m is squarefree (A005117), then a(m) = A000010(m) where A000010 is the Euler totient function. - Michel Marcus, Nov 08 2017
Also it appears that the primorials (A002110) is the sequence of indices of minimum records for a(n)/n, and these records are A038110(n)/A060753(n). - Michel Marcus, Nov 09 2017
Also called rho(n). When rho(n) | n, then n is called k-imperfect, with k = n/rho(n), cf. A127724. - M. F. Hasler, Feb 13 2020

References

  • P. J. McCarthy, Introduction to Arithmetical Functions, Springer Verlag, 1986, page 25.

Crossrefs

Cf. A027748 row, A124010, A206475 (first differences).
Cf. A078429.
Cf. A127724 (k-imperfect), A127725 (2-imperfect), A127726 (3-imperfect).

Programs

  • Haskell
    a206369 n = product $
       zipWith h (a027748_row n) (map toInteger $ a124010_row n) where
               h p e = sum $ take (fromInteger e + 1) $
                             iterate ((* p) . negate) (1 - 2 * (e `mod` 2))
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Maple
    a:= n-> mul(add(i[1]^(i[2]-j)*(-1)^j, j=0..i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 03 2017
  • Mathematica
    Table[Length[Select[Range[n], IntegerQ[GCD[n, #]^(1/2)] &]], {n, 72}] (* Geoffrey Critzer, Feb 16 2015 *)
    a[n_] := n*DivisorSum[n, LiouvilleLambda[#]/#&]; Array[a, 72] (* Jean-François Alcover, Dec 04 2017, after Enrique Pérez Herrero *)
    f[p_,e_] := Sum[(-1)^(e-k)*p^k, {k,0,e}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jan 01 2020 *)
  • PARI
    a(n) = sum(k=1, n, issquare(gcd(n, k)));
    
  • PARI
    ak(p,e)=my(s=1); for(i=1,e, s=s*p + (-1)^i); s
    a(n)=my(f=factor(n)); prod(i=1,#f~, ak(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Dec 27 2016
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d) * issquare(d)); \\ Daniel Suteu, Jun 27 2018
    
  • PARI
    apply( {A206369(n)=vecprod([f[1]^(f[2]+1)\/(f[1]+1)|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Feb 13 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def A206369(n): return prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 05 2024

Formula

a(n) = abs(A061020(n)).
a(n) = n*Sum_{d|n} lambda(d)/d, where lambda(n) is A008836(n). - Enrique Pérez Herrero, Sep 23 2012
Dirichlet g.f.: zeta(s - 1)*zeta(2*s)/zeta(s). - Geoffrey Critzer, Feb 25 2015
From Michel Marcus, Nov 05 2017: (Start)
a(2^n) = A001045(n+1);
a(3^n) = A015518(n+1);
a(5^n) = A015531(n+1);
a(7^n) = A015552(n+1);
a(11^n) = A015592(n+1). (End)
a(p^k) = p^k - a(p^(k - 1)) for k > 0 and prime p. - David A. Corneth, Nov 09 2017
a(n) = Sum_{d|n, d is a perfect square} phi(n/d), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 27 2018
a(p^k) = A071324(p^k), for k >= 0 and prime p. - Michel Marcus, Aug 11 2018
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 30. - Vaclav Kotesovec, Feb 07 2019
G.f.: Sum_{k>=1} lambda(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, May 23 2019
a(n) = Sum_{i=1..n} A010052(gcd(n,i)). - Ridouane Oudra, Nov 24 2019
a(p^k) = round(p^(k+1)/(p+1)). - M. F. Hasler, Feb 13 2020

A336866 Number of integer partitions of n without all distinct multiplicities.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 15, 21, 28, 46, 56, 80, 114, 149, 192, 269, 337, 455, 584, 751, 943, 1234, 1527, 1944, 2422, 3042, 3739, 4699, 5722, 7100, 8668, 10634, 12880, 15790, 19012, 23093, 27776, 33528, 40102, 48264, 57469, 68793, 81727, 97372, 115227
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2020

Keywords

Examples

			The a(0) = 0 through a(9) = 15 partitions (empty columns shown as dots):
  .  .  .  (21)  (31)  (32)  (42)    (43)    (53)     (54)
                       (41)  (51)    (52)    (62)     (63)
                             (321)   (61)    (71)     (72)
                             (2211)  (421)   (431)    (81)
                                     (3211)  (521)    (432)
                                             (3221)   (531)
                                             (3311)   (621)
                                             (4211)   (3321)
                                             (32111)  (4221)
                                                      (4311)
                                                      (5211)
                                                      (32211)
                                                      (42111)
                                                      (222111)
                                                      (321111)
		

Crossrefs

A098859 counts the complement.
A130092 gives the Heinz numbers of these partitions.
A001222 counts prime factors with multiplicity.
A013929 lists nonsquarefree numbers.
A047966 counts uniform partitions.
A047967 counts non-strict partitions.
A071625 counts distinct prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor with distinct prime multiplicities.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@Length/@Split[#]&]],{n,0,30}]

Formula

a(n) = A000041(n) - A098859(n).

A002479 Numbers of the form x^2 + 2*y^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 17, 18, 19, 22, 24, 25, 27, 32, 33, 34, 36, 38, 41, 43, 44, 48, 49, 50, 51, 54, 57, 59, 64, 66, 67, 68, 72, 73, 75, 76, 81, 82, 83, 86, 88, 89, 96, 97, 98, 99, 100, 102, 107, 108, 113, 114, 118, 121, 123, 128, 129, 131
Offset: 1

Views

Author

Keywords

Comments

A positive number k belongs to this sequence if and only if every prime p == 5, 7 (mod 8) dividing k occurs to an even power. - Sharon Sela (sharonsela(AT)hotmail.com), Mar 23 2002
Norms of numbers in Z[sqrt(-2)]. - Alonso del Arte, Sep 23 2014
Euler (E256) shows that these numbers are closed under multiplication, according to the Euler Archive. - Charles R Greathouse IV, Jun 16 2016
In addition to the previous comment: The proof was already given 1100 years before Euler by Brahmagupta's identity (a^2 + m*b^2)*(c^2 + m*d^2) = (a*c - m*b*d)^2 + m*(a*d + b*c)^2. - Klaus Purath, Oct 07 2023

References

  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 421.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A097700. Subsequence of A000408. For primes see A033203.

Programs

  • Haskell
    a002479 n = a002479_list !! (n-1)
    a002479_list = 0 : filter f [1..] where
       f x = all (even . snd) $ filter ((`elem` [5,7]) . (`mod` 8) . fst) $
                                zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Feb 20 2014
    
  • Magma
    [n: n in [0..131] | NormEquation(2, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    lis:={}; M:=50; M2:=M^2;
    for x from 0 to M do for y from 0 to M do
    if x^2+2*y^2 <= M2 then lis:={op(lis),x^2+2*y^2}; fi; od: od:
    sort(convert(lis,list)); # N. J. A. Sloane, Apr 30 2015
  • Mathematica
    q = 16; imax = q^2; Select[Union[Flatten[Table[x^2 + 2y^2, {y, 0, q/Sqrt[2]}, {x, 0, q}]]], # <= imax &] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    Union[#[[1]]+2#[[2]]&/@Tuples[Range[0,10]^2,2]] (* Harvey P. Dale, Nov 24 2014 *)
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,1]%8>4 && f[i,2]%2, return(0)));1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    list(lim)=my(v=List()); for(a=0,sqrtint(lim\=1), for(b=0,sqrtint((lim-a^2)\2), listput(v,a^2+2*b^2))); Set(v) \\ Charles R Greathouse IV, Jun 16 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A002479_gen(): # generator of terms
        return filter(lambda n:all(p & 7 < 5 or e & 1 == 0 for p, e in factorint(n).items()),count(0))
    A002479_list = list(islice(A002479_gen(),30)) # Chai Wah Wu, Jun 27 2022

A276078 Numbers n in whose prime factorization no exponent of any prime(k) exceeds k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

Numbers not divisible by p^(1+A000720(p)) for any prime p, where A000720(p) gives the index of prime p: 1 for 2, 2 for 3, 3 for 5, and so on.
Also Heinz numbers of integer partitions where the multiplicity of i does not exceed i for any i (A052335). Differs from A048103 in lacking {625, 1250, 1875, 3750, 4375, 5625, 6875, 8125, 8750, ...}. - Gus Wiseman, Mar 09 2019
Asymptotic density is Product_{i>=1} 1-prime(i)^(-1-i) = 0.72102334... - Amiram Eldar, Oct 20 2020

Crossrefs

Positions of zeros in A276077.
Complement: A276079.
Sequence A276076 sorted into ascending order.
Subsequence of A048103 from which it differs for the first time at n=451, where a(451) = 626, while A048103(451) = 625, a value missing from here.

Programs

  • Mathematica
    Select[Range@ 121, Or[# == 1, AllTrue[FactorInteger[#], PrimePi[#1] >= #2 & @@ # &]] &] (* Michael De Vlieger, Jun 24 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > primepi(f[k, 1]), return(0))); return (1); \\ Michel Marcus, Jun 24 2017
    
  • PARI
    is(n) = {my(t=1);forprime(p = 2, , t++; pp = p^t; if(n%pp==0, return(0)); if(pp > n, return(1)))} \\ David A. Corneth, Jun 24 2017
    
  • PARI
    upto(n) = {my(v = vector(n,i,1), t=1, res=List()); forprime(p=2, , t++; pp = p^t; if(pp>n, break); for(i=1, n\pp, v[pp*i] = 0)); for(i=1, n, if(v[i]==1, listput(res, i))); res} \\ David A. Corneth, Jun 24 2017
  • Python
    from sympy import factorint, primepi
    def ok(n):
        f = factorint(n)
        return all(f[i] <= primepi(i) for i in f)
    print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Jun 24 2017
    

A353838 Numbers whose prime indices have all distinct run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with run-sums (2,4,3), so 180 is in the sequence.
The prime indices of 315 are {2,2,3,4}, with run-sums (4,3,4), so 315 is not in the sequence.
		

Crossrefs

The version for all equal run-sums is A353833, counted by A304442.
These partitions are counted by A353837.
The complement is A353839.
The version for compositions is A353852, counted by A353850.
The greatest run-sum is given by A353862, least A353931.
The weak case is A353866, counted by A353864.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A098859 counts partitions with distinct multiplicities, ranked by A130091.
A165413 counts distinct run-sums in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents taking run-sums of a partition, compositions A353847.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]&]

A359889 Numbers that are 1 or whose prime indices have the same mean as median.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

First differs from A236510 in having 252 (prime indices {1,1,2,2,4}).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with mean 2 and median 2, so 900 is in the sequence.
		

Crossrefs

These partitions are counted by A240219, strict A359897.
The LHS (mean of prime indices) is A326567/A326568.
The complement is A359890, counted by A359894.
The odd-length case is A359891, complement A359892, counted by A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||Mean[prix[#]]==Median[prix[#]]&]

Formula

Numbers n such that A326567(n)/A326568(n) = A360005(n)/2.

A356862 Numbers with a unique largest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 101, 103, 104
Offset: 1

Views

Author

Jens Ahlström, Sep 01 2022

Keywords

Comments

If the prime factorization of k has a unique largest exponent, then k is a term.
Numbers whose multiset of prime factors (with multiplicity) has a unique mode. - Gus Wiseman, May 12 2023
Disjoint union of A246655 and A376250. The asymptotic density of this sequence, 0.3660366524547281232052..., is equal to the density of A376250 since the prime powers have a zero density. - Amiram Eldar, Sep 17 2024

Examples

			Prime powers (A246655) are in the sequence, since they have only one prime exponent in their prime factorization, hence a unique largest exponent.
144 is in the sequence, since 144 = 2^4 * 3^2 and there is the unique largest exponent 4.
225 is not in the sequence, since 225 = 3^2 * 5^2 and the largest exponent 2 is not unique, but rather it is the exponent of both the prime factor 3 and of the prime factor 5.
		

Crossrefs

Subsequence of A319161 (which has additional terms 1, 180, 252, 300, 396, 450, 468, ...).
For factors instead of exponents we have A102750.
For smallest instead of largest we have A359178, counted by A362610.
The complement is A362605, counted by A362607.
The complement for co-mode is A362606, counted by A362609.
Partitions of this type are counted by A362608.
These are the positions of 1's in A362611, for co-modes A362613.
A001221 is the number of prime exponents, sum A001222.
A027746 lists prime factors, A112798 indices, A124010 exponents.
A362614 counts partitions by number of modes, A362615 co-modes.

Programs

  • Mathematica
    Select[Range[2, 100], Count[(e = FactorInteger[#][[;; , 2]]), Max[e]] == 1 &] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    isok(k) = if (k>1, my(f=factor(k), m=vecmax(f[,2]), w=select(x->(f[x,2] == m), [1..#f~])); #w == 1); \\ Michel Marcus, Sep 01 2022
  • Python
    from sympy import factorint
    from collections import Counter
    def ok(k):
        c = Counter(factorint(k)).most_common(2)
        return not (len(c) > 1 and c[0][1] == c[1][1])
    print([k for k in range(2, 105) if ok(k)])
    
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A356862_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:len(f:=sorted(factorint(n).values(),reverse=True))==1 or f[0]!=f[1],count(max(startvalue,2)))
    A356862_list = list(islice(A356862_gen(),30)) # Chai Wah Wu, Sep 10 2022
    

A109298 Primal codes of finite idempotent functions on positive integers.

Original entry on oeis.org

1, 2, 9, 18, 125, 250, 1125, 2250, 2401, 4802, 21609, 43218, 161051, 300125, 322102, 600250, 1449459, 2701125, 2898918, 4826809, 5402250, 9653618, 20131375, 40262750, 43441281, 86882562, 181182375, 362364750, 386683451, 410338673, 603351125, 773366902, 820677346
Offset: 1

Views

Author

Jon Awbrey, Jul 06 2005

Keywords

Comments

Finite idempotent functions are identity maps on finite subsets, counting the empty function as the idempotent on the empty set.
From Gus Wiseman, Mar 09 2019: (Start)
Also numbers whose ordered prime signature is equal to the distinct prime indices in increasing order. A prime index of n is a number m such that prime(m) divides n. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base. The case where the prime indices are taken in decreasing order is A324571.
Also numbers divisible by prime(k) exactly k times for each prime index k. These are a kind of self-describing numbers (cf. A001462, A304679).
Also Heinz numbers of integer partitions where the multiplicity of m is m for all m in the support (counted by A033461). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A062457. For example, 43218 = prime(1)^1 * prime(2)^2 * prime(4)^4.
(End)

Examples

			Writing (prime(i))^j as i:j, we have the following table of examples:
Primal Codes of Finite Idempotent Functions on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = ` ` 2:2
` ` `18 = 1:1 2:2
` ` 125 = ` ` ` ` 3:3
` ` 250 = 1:1 ` ` 3:3
` `1125 = ` ` 2:2 3:3
` `2250 = 1:1 2:2 3:3
` `2401 = ` ` ` ` ` ` 4:4
` `4802 = 1:1 ` ` ` ` 4:4
` 21609 = ` ` 2:2 ` ` 4:4
` 43218 = 1:1 2:2 ` ` 4:4
`161051 = ` ` ` ` ` ` ` ` 5:5
`300125 = ` ` ` ` 3:3 4:4
`322102 = 1:1 ` ` ` ` ` ` 5:5
`600250 = 1:1 ` ` 3:3 4:4
From _Gus Wiseman_, Mar 09 2019: (Start)
The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2) has prime signature {1,2} and the distinct prime indices are also {1,2}.
       1: {}
       2: {1}
       9: {2,2}
      18: {1,2,2}
     125: {3,3,3}
     250: {1,3,3,3}
    1125: {2,2,3,3,3}
    2250: {1,2,2,3,3,3}
    2401: {4,4,4,4}
    4802: {1,4,4,4,4}
   21609: {2,2,4,4,4,4}
   43218: {1,2,2,4,4,4,4}
  161051: {5,5,5,5,5}
  300125: {3,3,3,4,4,4,4}
  322102: {1,5,5,5,5,5}
  600250: {1,3,3,3,4,4,4,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]==k]&]
  • PARI
    is(n) = my(f = factor(n)); for(i = 1, #f~, if(prime(f[i, 2]) != f[i, 1], return(0))); 1 \\ David A. Corneth, Mar 09 2019

Formula

Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/prime(n)^n) = 1.6807104966... - Amiram Eldar, Jan 03 2021

Extensions

Offset set to 1, missing terms inserted and more terms added by Alois P. Heinz, Mar 08 2019

A327498 Maximum divisor of n whose prime multiplicities are distinct (A130091).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 5, 16, 17, 18, 19, 20, 7, 11, 23, 24, 25, 13, 27, 28, 29, 5, 31, 32, 11, 17, 7, 18, 37, 19, 13, 40, 41, 7, 43, 44, 45, 23, 47, 48, 49, 50, 17, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 31, 63, 64, 13, 11, 67, 68, 23
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2019

Keywords

Comments

A number's prime multiplicities are also called its (unsorted) prime signature.
Every positive integer appears a finite number of times in the sequence; a prime p occurs 2^(PrimePi(p) - 1) times. - David A. Corneth, Sep 17 2019

Examples

			The divisors of 60 whose prime multiplicities are distinct are {1, 2, 3, 4, 5, 12, 20}, so a(60) = 20, the largest of these divisors.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    Table[Max[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]],{n,100}]
  • PARI
    a(n) = {my(m = Map(), f = factor(n), res = 1); forstep(i = #f~, 1, -1, forstep(j = f[i, 2], 1, -1, if(!mapisdefined(m, j), mapput(m, j, j); res*=f[i, 1]^j; next(2)))); res} \\ David A. Corneth, Sep 17 2019
    
  • PARI
    A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2]))));
    A327498(n) = fordiv(n,d,if(A351564(n/d), return(n/d))); \\ Antti Karttunen, Apr 02 2022

Formula

a(A130091(n)) = n and a(A130092(n)) < n. - Ivan N. Ianakiev, Sep 17 2019
a(n) = n / A327499(n). - Antti Karttunen, Apr 02 2022

A019554 Smallest number whose square is divisible by n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 8, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, 43, 22, 15, 46, 47, 12, 7, 10, 51, 26, 53, 18, 55, 28, 57, 58, 59, 30, 61, 62, 21, 8, 65, 66, 67, 34, 69, 70, 71, 12, 73, 74, 15, 38, 77
Offset: 1

Views

Author

R. Muller

Keywords

Comments

A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), and b*c = A019554(n) = "outer square root" of n.
Instead of the terms "inner square root" and "outer square root", we may use the terms "lower square root" and "upper square root", respectively. Upper k-th roots have been studied by Broughan (2002, 2003, 2006). - Petros Hadjicostas, Sep 15 2019
The number of times each number k appears in this sequence is A034444(k). The first time k appears is at position A102631(k). - N. J. A. Sloane, Jul 28 2021

Crossrefs

Cf. A000188 (inner square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Haskell
    a019554 n = product $ zipWith (^)
                (a027748_row n) (map ((`div` 2) . (+ 1)) $ a124010_row n)
    -- Reinhard Zumkeller, Apr 13 2013
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A019554(n): return n//prod(p**(q//2) for p, q in factorint(n).items()) # Chai Wah Wu, Aug 18 2021
  • Maple
    with(numtheory):A019554 := proc(n) local i: RETURN(op(mul(i,i=map(x->x[1]^ceil(x[2]/2),ifactors(n)[2])))); end;
  • Mathematica
    Flatten[Table[Select[Range[n],Divisible[#^2,n]&,1],{n,100}]] (* Harvey P. Dale, Oct 17 2011 *)
    f[p_, e_] := p^Ceiling[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n)=n/core(n,1)[2] \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

Replace any square factors in n by their square roots.
Multiplicative with a(p^e) = p^ceiling(e/2).
Dirichlet series:
Sum_{n>=1} a(n)/n^s = zeta(2*s-1)*zeta(s-1)/zeta(2*s-2), (Re(s) > 2);
Sum_{n>=1} (1/a(n))/n^s = zeta(2*s+1)*zeta(s+1)/zeta(2*s+2), (Re(s) > 0).
a(n) = n/A000188(n).
a(n) = denominator of n/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = Product_{k=1..A001221(n)} A027748(n,k)^ceiling(A124010(n,k)/2). - Reinhard Zumkeller, Apr 13 2013
Sum_{k=1..n} a(k) ~ 3*zeta(3)*n^2 / Pi^2. - Vaclav Kotesovec, Sep 18 2020
Sum_{k=1..n} 1/a(k) ~ 3*log(n)^2/(2*Pi^2) + (9*gamma/Pi^2 - 36*zeta'(2)/Pi^4)*log(n) + 6*gamma^2/Pi^2 - 108*gamma*zeta'(2)/Pi^4 + 432*zeta'(2)^2/Pi^6 - 36*zeta''(2)/Pi^4 - 15*sg1/Pi^2, where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jul 27 2021
a(n) = sqrt(n*A007913(n)). - Jianing Song, May 08 2022
a(n) = sqrt(A053143(n)). - Amiram Eldar, Sep 02 2023
From Mia Boudreau, Jul 17 2025: (Start)
a(n^2) = n.
a(A005117(n)) = A005117(n).
a(A133466(n)) = A133466(n)/2.
a(A195085(n)) = A195085(n)/3. (End)
Previous Showing 61-70 of 465 results. Next