cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A008732 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265
Offset: 0

Views

Author

Keywords

Examples

			From _Philippe Deléham_, Apr 05 2013: (Start)
Stored in five columns:
    1   2   3   4   5
    7   9  11  13  15
   18  21  24  27  30
   34  38  42  46  50
   55  60  65  70  75
   81  87  93  99 105
  112 119 126 133 140
(End)
		

Crossrefs

Cf. A130520.

Programs

  • GAP
    List([0..50], n-> Int((n+3)*(n+4)/10)); # G. C. Greubel, Jul 30 2019
  • Magma
    [Floor((n+3)*(n+4)/10): n in [0..50] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A092202 := proc(n) op(1+(n mod 5),[0,1,0,-1,0]) ; end proc:
    A010891 := proc(n) op(1+(n mod 5),[1,-1,0,0,0]) ; end proc:
    A008732 := proc(n) (n+2)*(n+5)/10+(A010891(n-1)+2*A092202(n-1))/5 ; end proc:
  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 7, 9}, 50] (* Jean-François Alcover, Jan 18 2018 *)
  • PARI
    a(n)=(n+3)*(n+4)\10 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [floor((n+3)*(n+4)/10) for n in (0..50)] # G. C. Greubel, Jul 30 2019
    

Formula

a(n) = floor( (n+3)*(n+4)/10 ) = (n+2)*(n+5)/10 + b(n)/5 where b(n) = A010891(n-2) + 2*A092202(n-1) = 0, 1, 1, 0, -2, ... with period length 5.
G.f.: 1/((1-x)^2*(1-x^5)).
a(n) = a(n-5) + n + 1. - Paul Barry, Jul 14 2004
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+5} floor(j/5).
a(n-5) = (1/2)floor(n/5)*(2*n - 3 - 5*floor(n/5)). (End)
a(n) = A130520(n+5). - Philippe Deléham, Apr 05 2013
a(5n) = A000566(n+1), a(5n+1) = A005476(n+1), a(5n+2) = A005475(n+1), a(5n+3) = A147875(n+2), a(5n+4) = A028895(n+1); these formulas correspond to the 5 columns of the array shown in example. - Philippe Deléham, Apr 05 2013

A011858 a(n) = floor( n*(n-1)/5 ).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 48, 54, 61, 68, 76, 84, 92, 101, 110, 120, 130, 140, 151, 162, 174, 186, 198, 211, 224, 238, 252, 266, 281, 296, 312, 328, 344, 361, 378, 396, 414, 432, 451, 470, 490, 510, 530, 551, 572, 594, 616, 638, 661, 684
Offset: 0

Views

Author

Keywords

Comments

a(n-2) is the total degree of the irreducible factor F(n) of the n-th Somos polynomial. - Michael Somos, Jul 06 2011

Examples

			G.f. = x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 14*x^9 + 18*x^10 + 22*x^11 + ...
F(5) = y + 1 is of degree a(3) = 1, F(6) = y*z + y + z is of degree a(4) = 2.
		

Crossrefs

Cf. A130520.

Programs

  • Magma
    [Floor(n*(n-1)/5): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    a[ n_] := Quotient[ n (n - 1), 5]; (* Michael Somos, Oct 19 2014 *)
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,0,1,2,4,6},60] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    {a(n) = n * (n - 1) \ 5}; /* Michael Somos, Jul 04 2011 */
    

Formula

G.f.: x^3*(x^2+1)/ ((1-x)^3 * (1+x+x^2+x^3+x^4)). a(n) = +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. J. Mathar, Apr 15 2010
Euler transform of length 5 sequence [2, 1, 0, -1, 1]. - Michael Somos, Jul 04 2011
a(1-n) = a(n). a(n) = a(n-5) + 2*n - 6 for all n in Z. - Michael Somos, Jul 04 2011
a(n) = a(n-1) + a(n-5) - a(n-6) + 2 for all n in Z. - Michael Somos, Jul 06 2011
a(n) = (1/5) * ( n^2 - n + [0,0,-2,-1,-2](mod 5) ). - Ralf Stephan, Aug 11 2013
a(n) - 2*a(n+1) + a(n+2) = (n == 1 (mod 5)) + (n == 3 (mod 5)) for all n in Z. - Michael Somos, Oct 19 2014
a(n) = A130520(n) + A130520(n+2). - R. J. Mathar, Aug 11 2021
Sum_{n>=3} 1/a(n) = 50/9 - sqrt(2*(5+sqrt(5)))*Pi/3 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - Amiram Eldar, Oct 01 2022

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A134546 Triangle read by rows: T(n, k) = Sum_{j=0..n} floor(j / k).

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 4, 2, 1, 15, 6, 3, 2, 1, 21, 9, 5, 3, 2, 1, 28, 12, 7, 4, 3, 2, 1, 36, 16, 9, 6, 4, 3, 2, 1, 45, 20, 12, 8, 5, 4, 3, 2, 1, 55, 25, 15, 10, 7, 5, 4, 3, 2, 1, 66, 30, 18, 12, 9, 6, 5, 4, 3, 2, 1, 78, 36, 22, 15, 11, 8, 6, 5, 4, 3, 2, 1, 91, 42, 26, 18, 13, 10, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

From Bob Selcoe, Aug 08 2016: (Start)
Columns are partial sums of k-repeating increasing positive integers:
Column 1 is {1+2+3+4+5+...} = A000217 (triangular numbers);
Column 2 is {1+1+2+2+3+3+4+4+...} = A002620 (quarter-squares);
Column 3 is {1+1+1+2+2+2+3+3+3+...} = A130518.
Columns k = 4..7 are A130519, A130520, A174709 and A174738, respectively.
T(n, k) is the number of positive multiples of k which can be expressed as i-j, {i=1..n; j=0..n-1}. So for example, T(5, 2) = 6 because there are 6 ways to express i-j {i<=5} as a multiple of 2: {5-3, 4-2, 3-1, 2-0, 5-1 and 4-0}. (End)
Conjecture: For T(n, k) n >= k^(3/2), there is at least one prime in the interval [T(n-1, k+1), T(n, k)]. - Bob Selcoe, Aug 21 2016
Theorem: For n >= 3*k, T(n, k) is composite. - Daniel Hoying, Jul 08 2020

Examples

			The triangle T(n, k) begins:
   n\k  1   2   3   4  5  6  7  8  9  10 ...
   1:   1
   2:   3   1
   3:   6   2   1
   4:  10   4   2   1
   5:  15   6   3   2  1
   6:  21   9   5   3  2  1
   7:  28  12   7   4  3  2  1
   8:  36  16   9   6  4  3  2  1
   9:  45  20  12   8  5  4  3  2  1
  10:  55  25  15  10  7  5  4  3  2   1
... Reformatted. - _Wolfdieter Lang_, Feb 04 2015
T(10,3) = 15: 3*floor(10/3)*floor(13/3)/2 - floor(10/3)*(3-1 - 13 mod 3) = 3*3*4/2 - 3*(3-1-1) = 18 - 3 = 15. - _Bob Selcoe_, Aug 21 2016
		

Crossrefs

Cf. A078567 (row sums), A000217 (column 1).

Programs

  • Maple
    T := proc(n, k) option remember: `if`(n = k, 1, T(n-1, k) + iquo(n,k)) end:
    seq(seq(T(n,k), k=1..n),n=1..16); # Peter Luschny, May 26 2020
  • Mathematica
    nn = 12; f[w_] := Map[PadRight[#, nn] &, w]; MapIndexed[Take[#1, First@ #2] &, f@ Table[Reverse@ Range@ n, {n, nn}].f@ Table[Boole@ Divisible[n, #] & /@ Range@ n, {n, nn}]] // Flatten (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    t(n, k) = if (k>n, 0, if (n==1, 1, t(n-1, k) + n\k));
    tabl(nn) = {m = matrix(nn, nn, n , k, t(n,k)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Jan 18 2015
    
  • PARI
    trg(nn) = {ma = matrix(nn, nn, n, k, if (k<=n, n-k+1, 0)); mb = matrix(nn, nn, n, k, if (k<=n, !(n%k), 0)); ma*mb;} \\ Michel Marcus, Jan 20 2015

Formula

Original definition: T = A004736 * A051731 as infinite lower triangular matrices.
In other words: T(n, k) = Sum_{m=k..n} A004736(n, m)*A051731(m, k).
T(n, k) = 0 if n < k, T(1, 1) = 1, and T(n, k) = T(n-1, k) + floor(n/k), for n >= 2. - Richard R. Forberg, Jan 17 2015
T(n, k) = k*floor(n/k)*floor((n+k)/k)/2 - floor(n/k)*(k-1-(n mod k)). - Bob Selcoe, Aug 21 2016
T(n, k) = k*A000217(b) + (b+1)*[(n +1)-(b + 1)*k] for 1 <= k <= floor[(n + 1) / 2] where b = floor[(n - k + 1) / k], T(n, k) = n-k+1 for floor[(n + 1) / 2] < k <= n and T(n, k) = 0 for k > n. - Henri Gonin, May 12 2020
T(n, k) = (-k/2)*floor(n/k)^2+(n-k/2+1)*floor(n/k). - Daniel Hoying, May 25 2020
From Daniel Hoying, Jul 06 2020: (Start)
T(m + 2*n - 1, m + n) = n for n > 0, m >= 0.
T(3*m + 3*ceiling((n-3)/6) + (n+1)/2, 2*m + 2*ceiling((n-3)/6) + 1) = n for n > 0, n odd, 0 <= m <= floor(n/3).
T(3*m + 3*ceiling(n/6) + n/2 - 1, 2*m + 2*ceiling(n/6)) = n for n > 0, n even, 0 <= m <= floor(n/3). (End)

Extensions

Edited. Name clarified. Formulas rewritten. - Wolfdieter Lang, Feb 04 2015
Corrected and extended by Michael De Vlieger, Aug 10 2016
Edited and new name from Peter Luschny, Apr 02 2025

A062781 Number of arithmetic progressions of four terms and any mean which can be extracted from the set of the first n positive integers.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392
Offset: 1

Views

Author

Santi Spadaro, Jul 18 2001

Keywords

Comments

This sequence seems to be a shifted version of the Somos sequence A058937.
Equal to the partial sums of A002264 (cf. A130518) but with initial index 1 instead of 0. - Hieronymus Fischer, Jun 01 2007
Apart from offset, the same as A130518. - R. J. Mathar, Jun 13 2008
Apart from offset, the same as A001840. - Michael Somos, Sep 18 2010

Crossrefs

Programs

  • Maple
    seq(coeff(series(x^4/((1-x^3)*(1-x)^2),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
  • Mathematica
    RecurrenceTable[{a[0]==0, a[n]==Floor[n/3] + a[n-1]}, a, {n, 49}] (* Jon Maiga, Nov 25 2018 *)
  • Sage
    [floor(binomial(n,2)/3) for n in range(0,50)] # Zerinvary Lajos, Dec 01 2009

Formula

a(n) = P(n,4), where P(n,k) = n*floor(n/(k - 1)) - (1/2)(k - 1)(floor(n/(k - 1))*(floor(n/(k - 1)) + 1)); recursion: a(n) = a(n-3) + n - 3; a(1) = a(2) = a(3) = 0.
From Hieronymus Fischer, Jun 01 2007: (Start)
a(n) = (1/2)*floor((n-1)/3)*(2*n - 3 - 3*floor((n-1)/3)).
G.f.: x^4/((1 - x^3)*(1 - x)^2). (End)
a(n) = floor((n-1)/3) + a(n-1). - Jon Maiga, Nov 25 2018
E.g.f.: ((4 - 6*x + 3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Franck Maminirina Ramaharo, Nov 25 2018

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A227353 Number of lattice points in the closed region bounded by the graphs of y = 3*x/5, x = n, and y = 0, excluding points on the x-axis.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 14, 18, 23, 29, 35, 42, 49, 57, 66, 75, 85, 95, 106, 118, 130, 143, 156, 170, 185, 200, 216, 232, 249, 267, 285, 304, 323, 343, 364, 385, 407, 429, 452, 476, 500, 525, 550, 576, 603, 630, 658, 686, 715, 745, 775, 806, 837, 869, 902, 935
Offset: 1

Views

Author

Clark Kimberling, Jul 08 2013

Keywords

Comments

See A227347.

Examples

			a(1) = floor(3/5) = 0; a(2) = floor(6/5) = 1; a(3) = a(2) + floor(9/5) = 2; a(4) = a(3) + floor(12/5) = 4.
		

Crossrefs

Cf. A057355 (first differences).

Programs

  • Mathematica
    z = 150; r = 3/5; k = 1; a[n_] := Sum[Floor[r*x^k], {x, 1, n}]; t = Table[a[n], {n, 1, z}]
  • PARI
    a(n) = (3*n^2-n)\10; \\ Kevin Ryde, Mar 15 2022
    
  • Python
    a = lambda n: n*(3*n-1)//10 # Gennady Eremin, Mar 20 2022

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
G.f.: (x*(1 + x^2 + x^3))/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
According to Wolfram Alpha, a(n) = floor(Re(E(n^2|Pi))) where E(x|m) is the incomplete elliptic integral of the second kind. - Kritsada Moomuang, Jan 28 2022
a(n) = a(n-1) + floor(3*n/5), n > 1. - Gennady Eremin, Mar 15 2022
a(n) = floor(n*(3*n-1)/10). - Kevin Ryde, Mar 15 2022

A185170 a(n) = floor( (2*n^2 - 6*n + 9) / 5).

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 9, 13, 17, 23, 29, 37, 45, 53, 63, 73, 85, 97, 109, 123, 137, 153, 169, 185, 203, 221, 241, 261, 281, 303, 325, 349, 373, 397, 423, 449, 477, 505, 533, 563, 593, 625, 657, 689, 723, 757, 793, 829, 865, 903, 941, 981, 1021, 1061, 1103, 1145
Offset: 0

Views

Author

Michael Somos, Dec 26 2012

Keywords

Comments

Hasselblatt and Propp on page 8 mentions the sequence as degrees of iterates of (w, x, y, z) -> (x, y, z, z*(w*z - x*y) / (w*y - x*x)). That is, if b(0) = w, b(1) = x, b(2) = y, b(3) = z, b(n) = b(n-1) * (b(n-1)*b(n-4) - b(n-2)*b(n-3)) / (b(n-2)*b(n-4) - b(n-3)*b(n-3)), then b(n) is a rational function such that the total degree of the numerator is a(n) and the denominator is a(n)-1. Also b(n) is a Laurent monomial in variables {w, x, y, z, wz-xy, wy-xx, xz-yy}.
A quasipolynomial. - Charles R Greathouse IV, Dec 28 2012

Examples

			G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 13*x^7 + 17*x^8 + 23*x^9 + ...
		

Crossrefs

Cf. A130520.

Programs

  • Magma
    [Floor((2*n^2-6*n+9)/5): n in [0..50]]; // G. C. Greubel, Aug 10 2018
  • Mathematica
    Table[Floor[(2 n^2 - 6 n + 9)/5], {n, 0, 60}] (* or *) LinearRecurrence[ {2,-1,0,0,1,-2,1},{1,1,1,1,3,5,9},60] (* Harvey P. Dale, Dec 28 2012 *)
    a[ n_] := Quotient[ 2 n^2 - 6 n + 9, 5]; (* Michael Somos, Apr 25 2015 *)
  • Maxima
    A185170(n):=floor((2*n^2-6*n+9)/5)$ makelist(A185170(n),n,0,30); /* Martin Ettl, Dec 28 2012 */
    
  • PARI
    {a(n) = (2*n^2 - 6*n + 9) \ 5};
    

Formula

G.f.: (1 - x + 2*x^4 - x^5 + 3*x^6) / ((1 - x)^2 * (1 - x^5)).
a(n) = a(3-n) for all n in Z.
Second difference has period 5.
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=3, a(5)=5, a(6)=9, a(n)=2*a(n-1)- a(n-2)+ a(n-5)-2*a(n-6)+a (n-7). - Harvey P. Dale, Dec 28 2012

A269445 a(n) = Sum_{k=0..n} floor(k/13).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

Partial sums of A090620.
More generally, the ordinary generating function for the Sum_{k=0..n} floor(k/m) is x^m/((1 - x^m)*(1 - x)^2).

Crossrefs

Cf. A090620.
Cf. similar sequences of Sum_{k=0..n} floor(k/m): A002620 (m=2), A130518 (m=3), A130519 (m=4), A130520 (m=5), A174709 (m=6), A174738 (m=7), A118729 (m=8), A218470 (m=9), A131242 (m=10), A218530 (m=11), A221912 (m=12), this sequence (m=13).

Programs

  • Mathematica
    Table[Sum[Floor[k/13], {k, 0, n}], {n, 0, 73}]
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 74]

Formula

G.f.: x^13/((1 - x^13)*(1 - x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-13) - 2*a(n-14) + a(n-15).
Previous Showing 11-19 of 19 results.