cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A140675 a(n) = n*(3*n + 19)/2.

Original entry on oeis.org

0, 11, 25, 42, 62, 85, 111, 140, 172, 207, 245, 286, 330, 377, 427, 480, 536, 595, 657, 722, 790, 861, 935, 1012, 1092, 1175, 1261, 1350, 1442, 1537, 1635, 1736, 1840, 1947, 2057, 2170, 2286, 2405, 2527, 2652, 2780, 2911, 3045, 3182
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    Table[(n(3n+19))/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,25},50] (* Harvey P. Dale, Apr 26 2018 *)
  • PARI
    a(n)=n*(3*n+19)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (3*n^2 + 19*n)/2.
a(n) = 3*n + a(n-1) + 8 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(11 - 8*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 22*x)*exp(x). - G. C. Greubel, Jul 17 2017

A022268 a(n) = n*(11*n - 1)/2.

Original entry on oeis.org

0, 5, 21, 48, 86, 135, 195, 266, 348, 441, 545, 660, 786, 923, 1071, 1230, 1400, 1581, 1773, 1976, 2190, 2415, 2651, 2898, 3156, 3425, 3705, 3996, 4298, 4611, 4935, 5270, 5616, 5973, 6341, 6720, 7110, 7511, 7923, 8346, 8780, 9225, 9681, 10148, 10626, 11115
Offset: 0

Views

Author

Keywords

Comments

Number of sets with two elements that can be obtained by selecting distinct elements from two sets with 2n and 3n elements respectively and n common elements. - Polina S. Dolmatova (polinasport(AT)mail.ru), Jul 11 2003

Crossrefs

Cf. index to sequence with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. similar sequences listed in A022288.

Programs

Formula

G.f.: x*(5 + 6*x)/(1-x)^3. - Bruno Berselli, Feb 11 2011
a(n) = 11*n + a(n-1) - 6 for n>0. - Vincenzo Librandi, Aug 04 2010
a(n) = A000217(6*n-1) - A000217(5*n-1). - Bruno Berselli, Oct 17 2016
From Wesley Ivan Hurt, Dec 04 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = (1/9) * Sum_{i=n..10n-1} i. (End)
E.g.f.: (1/2)*(11*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

A151542 Generalized pentagonal numbers: a(n) = 12*n + 3*n*(n-1)/2.

Original entry on oeis.org

0, 12, 27, 45, 66, 90, 117, 147, 180, 216, 255, 297, 342, 390, 441, 495, 552, 612, 675, 741, 810, 882, 957, 1035, 1116, 1200, 1287, 1377, 1470, 1566, 1665, 1767, 1872, 1980, 2091, 2205, 2322, 2442, 2565, 2691, 2820, 2952, 3087, 3225, 3366, 3510, 3657, 3807, 3960
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2009

Keywords

Crossrefs

The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    s=0;lst={};Do[AppendTo[lst,s+=n],{n,12,6!,3}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 05 2010 *)
    LinearRecurrence[{3,-3,1}, {0,12,27}, 50] (* or *) With[{nn = 50}, CoefficientList[Series[(3/2)*(8*x + x^2)*Exp[x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 26 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace((3/2)*(8*x + x^2)*exp(x)))) \\ G. C. Greubel, May 26 2017
    
  • PARI
    a(n)=(3*n^2+21*n)/2 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = a(n-1) + 3*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(4 - 3*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
From G. C. Greubel, May 26 2017: (Start)
a(n) = 3*n*(n+7)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (3/2)*(8*x + x^2)*exp(x). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 121/490.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/21 - 319/4410. (End)
a(n) = A003154(n+1) - A060544(n). - Leo Tavares, Mar 26 2022

A152734 5 times pentagonal numbers: 5*n*(3*n-1)/2.

Original entry on oeis.org

0, 5, 25, 60, 110, 175, 255, 350, 460, 585, 725, 880, 1050, 1235, 1435, 1650, 1880, 2125, 2385, 2660, 2950, 3255, 3575, 3910, 4260, 4625, 5005, 5400, 5810, 6235, 6675, 7130, 7600, 8085, 8585, 9100, 9630, 10175, 10735, 11310, 11900, 12505, 13125, 13760, 14410
Offset: 0

Views

Author

Omar E. Pol, Dec 11 2008

Keywords

Comments

a(n) can be represented as a figurate number using n concentric pentagons (see example). - Omar E. Pol, Aug 21 2011

Examples

			From _Omar E. Pol_, Aug 22 2011 (Start):
Illustration of initial terms as concentric pentagons (in a precise representation the pentagons should be strictly concentric):
.
.                                          o
.                                        o   o
.                                      o       o
.                o                   o     o     o
.              o   o               o     o   o     o
.            o       o           o     o       o     o
.  o       o     o     o       o     o     o     o     o
.o   o   o     o   o     o   o     o     o   o     o     o
. o o     o     o o     o     o     o     o o     o     o
.          o           o       o     o           o     o
.           o         o         o     o         o     o
.            o o o o o           o     o o o o o     o
.                                 o                 o
.                                  o               o
.                                   o o o o o o o o
.
.  5             25                        60
(End)
		

Crossrefs

Cf. sequences of the form n*(d*n+10-d)/2 indexed in A140090.

Programs

Formula

a(n) = 5*A000326(n).
a(n) = a(n-1)+15*n-10 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 5*x*(1+2*x)/(1-x)^3. a(n) = 4*A000217(n)+A051865(n). - Bruno Berselli, Feb 11 2011
E.g.f.: (5/2)*(3*x^2 + 2*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi- 6*log(2))/15. (End)

A140673 a(n) = 3*n*(n + 5)/2.

Original entry on oeis.org

0, 9, 21, 36, 54, 75, 99, 126, 156, 189, 225, 264, 306, 351, 399, 450, 504, 561, 621, 684, 750, 819, 891, 966, 1044, 1125, 1209, 1296, 1386, 1479, 1575, 1674, 1776, 1881, 1989, 2100, 2214, 2331, 2451, 2574, 2700, 2829, 2961, 3096
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) equals the number of vertices of the A256666(n)-th graph (see Illustration of initial terms in A256666 Links). - Ivan N. Ianakiev, Apr 20 2015

Crossrefs

Cf. A055998.
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Mathematica
    Table[Sum[i + n - 3, {i, 6, n}], {n, 5, 52}] (* Zerinvary Lajos, Jul 11 2009 *)
    Table[3 n (n + 5)/2, {n, 0, 50}] (* Bruno Berselli, Sep 05 2018 *)
    LinearRecurrence[{3,-3,1},{0,9,21},50] (* Harvey P. Dale, Jul 20 2023 *)
  • PARI
    concat(0, Vec(3*x*(3 - 2*x)/(1 - x)^3 + O(x^100))) \\ Michel Marcus, Apr 20 2015
    
  • PARI
    a(n) = 3*n*(n+5)/2; \\ Altug Alkan, Sep 05 2018

Formula

a(n) = A055998(n)*3 = (3*n^2 + 15*n)/2 = n*(3*n + 15)/2.
a(n) = 3*n + a(n-1) + 6 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(3 - 2*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 18*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 137/450.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/15 - 47/450. (End)

A140674 a(n) = n*(3*n + 17)/2.

Original entry on oeis.org

0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = (3*n^2 + 17*n)/2.
a(n) = 7*n + 3*A000217(n). - Reinhard Zumkeller, May 28 2008
a(n) = 3*n + a(n-1) + 7 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: x*(10 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 20*x)*exp(x). - G. C. Greubel, Jul 17 2017

A186030 a(n) = n*(13*n-3)/2.

Original entry on oeis.org

0, 5, 23, 54, 98, 155, 225, 308, 404, 513, 635, 770, 918, 1079, 1253, 1440, 1640, 1853, 2079, 2318, 2570, 2835, 3113, 3404, 3708, 4025, 4355, 4698, 5054, 5423, 5805, 6200, 6608, 7029, 7463, 7910, 8370, 8843, 9329, 9828, 10340, 10865, 11403
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2011

Keywords

Crossrefs

Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.
Cf. A154609 (first differences).

Programs

Formula

G.f.: x*(5+8*x)/(1-x)^3.
From Bruno Berselli, Sep 05 2011: (Start)
a(n) - a(-n) = -A008585(n).
a(n) + a(-n) = A152742(n). (End)
E.g.f.: (1/2)*(13*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

A208514 Triangle of coefficients of polynomials u(n,x) jointly generated with A208515; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 6, 7, 5, 1, 5, 8, 12, 13, 8, 1, 6, 10, 18, 24, 23, 13, 1, 7, 12, 25, 38, 46, 41, 21, 1, 8, 14, 33, 55, 78, 88, 72, 34, 1, 9, 16, 42, 75, 120, 158, 165, 126, 55, 1, 10, 18, 52, 98, 173, 255, 313, 307, 219, 89, 1, 11, 20, 63, 124, 238
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

u(n,n) = Fibonacci(n), A000045
u(n+1,n) = A208354(n)
col 1: A000012
col 2: A000027
col 3: A005843
col 4: A055998
col 5: A140090

Examples

			First five rows:
1
1...1
1...2...2
1...3...4...3
1...4...6...7...5
First five polynomials u(n,x):
1
1 + x
1 + 2x + 2x^2
1 + 3x + 4x^2 + 3x^3
1 + 4x + 6x^2 + 7x^3 + 5x^4
		

Crossrefs

Cf. A208515.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208514 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208515 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A258440 Number of squares of all sizes in 3*n*(n+1)/2-ominoes in form of three-quarters of Aztec diamonds.

Original entry on oeis.org

3, 11, 25, 49, 84, 132, 196, 278, 379, 503, 651, 825, 1028, 1262, 1528, 1830, 2169, 2547, 2967, 3431, 3940, 4498, 5106, 5766, 6481, 7253, 8083, 8975, 9930, 10950, 12038, 13196, 14425, 15729, 17109, 18567, 20106, 21728, 23434, 25228, 27111, 29085, 31153, 33317, 35578, 37940, 40404, 42972, 45647, 48431
Offset: 1

Views

Author

Luce ETIENNE, May 30 2015

Keywords

Comments

These polyominoes are 6*n-gons, and thus their number of vertices is n*(3*n+7).
Schäfli's notation for figure corresponding to a(1): 4.4.4.

Examples

			a(1)=3, a(2)=9+2=11, a(3)=18+7=25, a(4)=30+15+4=49, a(5)=45+26+11+2=84.
		

Crossrefs

Programs

  • Magma
    [(52*n^3+186*n^2+212*n-3*(32*Floor(n/3)+3*(1-(-1)^n)))/144: n in [1..50]]; // Vincenzo Librandi, Jun 02 2015
  • Maple
    A258440:=n->(52*n^3+186*n^2+212*n-3*(32*floor(n/3)+3*(1-(-1)^n)))/144: seq(A258440(n), n=1..100); # Wesley Ivan Hurt, Jul 10 2015
  • Mathematica
    Table[(52 n^3 + 186 n^2 + 212 n - 3 (32 Floor[n/3] + 3 (1 - (-1)^n)))/144, {n, 45}] (* Vincenzo Librandi, Jun 02 2015 *)
  • PARI
    Vec(x*(2*x^3+3*x^2+5*x+3)/((x-1)^4*(x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jun 01 2015
    

Formula

a(n) = 2*A241526(n) - A173196(n+1).
a(n) = (1/8)*(Sum_{i=0..(n-1-floor(n/3)}(4*n+1-6*i-(-1)^i)*(4*n+3-6*i+(-1)^i)- Sum_{j=0..(2*n-1+(-1)^n)}(2*n+1+(-1)^n-4*j)*(2*n+1-(-1)^n-4*j)).
a(n) = (52*n^3+186*n^2+212*n-3*(32*floor(n/3)+3*(1-(-1)^n)))/144.
a(n) = 2*a(n-1)-a(n-3)-a(n-4)+2*a(n-6)-a(n-7) for n>7. - Colin Barker, Jun 01 2015
G.f.: x*(2*x^3+3*x^2+5*x+3) / ((x-1)^4*(x+1)*(x^2+x+1)). - Colin Barker, Jun 01 2015

Extensions

Typo in data fixed by Colin Barker, Jun 01 2015
Name edited by Michel Marcus, Dec 22 2020

A341740 a(n) is the maximum value of the magic constant in a normal magic triangle of order n.

Original entry on oeis.org

12, 23, 37, 54, 74, 97, 123, 152, 184, 219, 257, 298, 342, 389, 439, 492, 548, 607, 669, 734, 802, 873, 947, 1024, 1104, 1187, 1273, 1362, 1454, 1549, 1647, 1748, 1852, 1959, 2069, 2182, 2298, 2417, 2539, 2664, 2792, 2923, 3057, 3194, 3334, 3477, 3623, 3772, 3924
Offset: 3

Views

Author

Stefano Spezia, Feb 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{12,23,37},49]

Formula

O.g.f.: x^3*(12 - 13*x + 4*x^2)/(1 - x)^3.
E.g.f.: 3 + x - 2*x^2 - exp(x)*(6 - 4*x - 3*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5.
a(n) = (3*n^2 + n - 6)/2 for n > 2.
a(n) = A285009(n) + A016777(n-2) - 1 for n > 3.
a(n) = A095794(n) - 2 = A140090(n-1) - 1. - Hugo Pfoertner, Feb 18 2021
Previous Showing 21-30 of 34 results. Next