A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A115990
Riordan array (1/sqrt(1-2*x-3*x^2), (1-2*x-3*x^2)/(2*(1-3*x)) - sqrt(1-2*x-3*x^2)/2).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 19, 13, 8, 4, 1, 51, 35, 22, 12, 5, 1, 141, 96, 61, 35, 17, 6, 1, 393, 267, 171, 101, 53, 23, 7, 1, 1107, 750, 483, 291, 160, 77, 30, 8, 1, 3139, 2123, 1373, 839, 476, 244, 108, 38, 9, 1, 8953, 6046, 3923, 2423, 1406, 752, 360, 147, 47, 10
Offset: 0
Triangle begins
1;
1, 1;
3, 2, 1;
7, 5, 3, 1;
19, 13, 8, 4, 1;
51, 35, 22, 12, 5, 1;
141, 96, 61, 35, 17, 6, 1;
-
Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)) ))); # G. C. Greubel, May 09 2019
-
[[(&+[Binomial(n-k, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
-
A115990 := proc(n,k)
add(binomial(n-k,j-k)*binomial(j,n-j),j=0..n) ;
end proc:
seq(seq(A115990(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
-
Table[Sum[ Binomial[n-k, j-k]*Binomial[j, n-j], {j, 0, n}], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
-
{T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j))}; \\ G. C. Greubel, May 09 2019
-
[[sum(binomial(n-k, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
A152949
a(n) = 3 + binomial(n-1,2).
Original entry on oeis.org
3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381
Offset: 1
-
List([1..55],n->3+Binomial(n-1,2)); # Muniru A Asiru, Oct 28 2018
-
seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3,x,n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018
-
s=3;lst={3};Do[s+=n;AppendTo[lst,s],{n,0,5!}];lst
Table[Binomial[n-1,2],{n,60}]+3 (* Harvey P. Dale, Feb 27 2013 *)
-
Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013
-
[3+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
A236257
a(n) = 2*n^2 - 7*n + 9.
Original entry on oeis.org
9, 4, 3, 6, 13, 24, 39, 58, 81, 108, 139, 174, 213, 256, 303, 354, 409, 468, 531, 598, 669, 744, 823, 906, 993, 1084, 1179, 1278, 1381, 1488, 1599, 1714, 1833, 1956, 2083, 2214, 2349, 2488, 2631, 2778, 2929, 3084, 3243, 3406, 3573, 3744, 3919, 4098, 4281, 4468
Offset: 0
a(7)=58. This means that the 58th heptagonal number 8323 (cf. A000566) is a sum of two heptagonal numbers. We have 8323 = 8037 + 286 with indices in A000566 58,57,11.
Cf.
A000217,
A000290,
A000326,
A000384,
A000566,
A000567,
A001106,
A001107,
A051624,
A051682,
A051865-
A051876,
A152948.
-
Table[2 n^2 - 7 n + 9, {n, 0, 48}] (* Michael De Vlieger, Apr 19 2015 *)
LinearRecurrence[{3,-3,1},{9,4,3},50] (* Harvey P. Dale, Nov 24 2017 *)
-
Vec(-(18*x^2-23*x+9)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
Original entry on oeis.org
17, 23, 47, 57, 93, 107, 173, 233, 353, 437, 467, 563, 677, 743, 817, 829, 851, 863, 955, 1037, 1187, 1213, 1277, 1387, 1433, 1487, 1549, 2089, 2147, 2213, 2287, 2293, 2417, 2473, 2689, 2777, 2911, 3083, 3323, 3391, 6691, 9337, 22969, 38557, 47347, 75391, 104999, 130927, 146719
Offset: 1
Number 817 = 19*43, equivalent to array position (4, 37), is in the sequence since none of the numbers in the prior column, diagonal, row and antidiagonal contain the counts of 1, 19, 43 and 817. - _Hartmut F. W. Hoft_, Jan 23 2017
-
(* support functions are in A279967 *)
a278436[k_] := Module[{ut=upperTriangle[k], ms=Table[" ", {i, 1, k}, {j, 1, k}], h, pos, val, seqL={}}, ms[[1, 1]]=1; For[h=2, h<=Length[ut], h++, pos=ut[[h]]; val=Length[Select[Map[ms[[Apply[Sequence, #]]]&, priorPos[pos]], #!=0 && Mod[seqPos[pos], #]==0&]]; If[val==0, AppendTo[seqL, h]]; ms[[Apply[Sequence, pos]]]=val]; seqL]
a278436[100] (* data through 3391. - Hartmut F. W. Hoft, Jan 23 2017 *)
A159881
Triangle read by rows : T(n,0) = n+1, T(n,k)=0 if k<0 or if k>n, T(n,k) = k*T(n-1,k) - T(n-1,k-1).
Original entry on oeis.org
1, 2, -1, 3, -3, 1, 4, -6, 5, -1, 5, -10, 16, -8, 1, 6, -15, 42, -40, 12, -1, 7, -21, 99, -162, 88, -17, 1, 8, -28, 219, -585, 514, -173, 23, -1, 9, -36, 466, -1974, 2641, -1379, 311, -30, 1, 10, -45, 968, -6388, 12538, -9536, 3245, -521, 38, -1
Offset: 0
Triangle begins :
1;
2, -1;
3, -3, 1;
4, -6, 5, -1;
5, -10, 16, -8, 1;
6, -15, 42, -40, 12, -1;
7, -21, 99, -162, 88, -17, 1;
8, -28, 219, -585, 514, -173, 23, -1;
9, -36, 466, -1974, 2641, -1379, 311, -30, 1;
10, -45, 968, -6388, 12538, -9536, 3245, -521, 38, -1;
11, -55, 1981, -20132, 56540, -60218, 29006, -6892, 825, -47, 1;
-
A159881 := proc(n,k) option remember; if k = 0 then n+1; elif k < 0 or k > n then 0 ; else k*procname(n-1,k)-procname(n-1,k-1) ; fi; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A159881(n,k)) ; od: od: # R. J. Mathar, May 29 2009
-
T[n_,0]:= n+1; T[n_,k_]:= T[n,k] = If[k < 0 || k > n, 0, k*T[n-1, k] - T[n-1, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 27 2018 *)
-
{T(n,k) = if(k==0, n+1, if(k<0 || k>n, 0, k*T(n-1,k) - T(n-1,k-1)))};
for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 27 2018
A214928
A209293 as table read layer by layer clockwise.
Original entry on oeis.org
1, 2, 4, 3, 5, 9, 14, 7, 6, 8, 12, 17, 23, 20, 11, 10, 13, 19, 26, 34, 43, 30, 27, 16, 15, 18, 24, 31, 39, 48, 58, 53, 38, 35, 22, 21, 25, 33, 42, 52, 63, 75, 88, 69, 64, 47, 44, 29, 28, 32, 40, 49, 59, 70, 82, 95, 109, 102, 81, 76, 57, 54, 37, 36, 41, 51, 62
Offset: 1
The start of the sequence as table:
1....2...5...8..13..18...
3....4...9..12..19..24...
6....7..14..17..26..31...
10..11..20..23..34..39...
15..16..27..30..43..48...
21..22..35..38..53..58...
. . .
The start of the sequence as triangle array read by rows:
1;
2,4,3;
5,9,14,7,6;
8,12,17,23,20,11,10;
13,19,26,34,43,30,27,16,15;
18,24,31,39,48,58,53,38,35,22,21;
. . .
Row number r contains 2*r-1 numbers.
Cf.
A209293,
A209279,
A209278,
A185180,
A060734,
A060736; table T(n,k) contains: in rows
A000982,
A097063; in columns
A000217,
A000124,
A000096,
A152948,
A034856,
A152950,
A055998,
A000982,
A097063.
A214929
A209293 as table read layer by layer - layer clockwise, layer counterclockwise and so on.
Original entry on oeis.org
1, 3, 4, 2, 5, 9, 14, 7, 6, 10, 11, 20, 23, 17, 12, 8, 13, 19, 26, 34, 43, 30, 27, 16, 15, 21, 22, 35, 38, 53, 58, 48, 39, 31, 24, 18, 25, 33, 42, 52, 63, 75, 88, 69, 64, 47, 44, 29, 28, 36, 37, 54, 57, 76, 81, 102, 109, 95, 82, 70, 59, 49, 40, 32, 41, 51, 62
Offset: 1
The start of the sequence as table:
1....2...5...8..13..18...
3....4...9..12..19..24...
6....7..14..17..26..31...
10..11..20..23..34..39...
15..16..27..30..43..48...
21..22..35..38..53..58...
. . .
The start of the sequence as triangle array read by rows:
1;
3,4,2;
5,9,14,7,6;
10,11,20,23,17,12,8;
13,19,26,34,43,30,27,16,15;
21,22,35,38,53,58,48,39,31,24,18;
. . .
Row number r contains 2*r-1 numbers.
Cf.
A081344,
A209293,
A209279,
A209278,
A185180; table T(n,k) contains: in rows
A000982,
A097063; in columns
A000217,
A000124,
A000096,
A152948,
A034856,
A152950,
A055998,
A000982,
A097063.
-
t=int((math.sqrt(n-1)))+1
i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)
j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2)
m1=int((i+j)/2)+int(i/2)*(-1)**(2*i+j-1)
m2=int((i+j+1)/2)+int(i/2)*(-1)**(2*i+j-2)
result=(m1+m2-1)*(m1+m2-2)/2+m1
A238531
Expansion of (1 - x + x^2)^2 / (1 - x)^3 in powers of x.
Original entry on oeis.org
1, 1, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, 1277, 1328, 1380
Offset: 0
G.f. = 1 + x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 17*x^6 + 23*x^7 + 30*x^8 + ...
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2)^2/(1-x)^3)); // G. C. Greubel, Aug 07 2018
-
a[ n_] := (n^2 - n) / 2 + If[ n == 0 || n == 1, 1, 2];
CoefficientList[Series[(1-x+x^2)^2/(1-x)^3, {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
-
{a(n) = (n^2 - n) / 2 + 2 - (n==0) - (n==1)};
-
{a(n) = if( n<0, n = 1-n); polcoeff( (1 - x + x^2)^2 / (1 - x)^3 + x * O(x^n), n)};
A173154
a(n) = n^3/6 + 3*n^2/4 + 7*n/3 + 7/8 + (-1)^n/8.
Original entry on oeis.org
1, 4, 10, 19, 33, 52, 78, 111, 153, 204, 266, 339, 425, 524, 638, 767, 913, 1076, 1258, 1459, 1681, 1924, 2190, 2479, 2793, 3132, 3498, 3891, 4313, 4764, 5246, 5759, 6305, 6884, 7498, 8147, 8833, 9556, 10318, 11119, 11961, 12844, 13770, 14739, 15753, 16812, 17918, 19071, 20273, 21524
Offset: 0
-
[n^3/6 + 3*n^2/4 + 7*n/3 + 7/8 + (-1)^n/8: n in [0..50]]; // Vincenzo Librandi, Aug 05 2011
-
Table[n^3/6+(3n^2)/4+(7n)/3+7/8+(-1)^n/8,{n,0,50}] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,4,10,19,33},50] (* Harvey P. Dale, Jan 04 2012 *)
Comments