cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A245300 Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2014

Keywords

Examples

			First rows and their row sums (A245301):
   0                                                                  0;
   1,  4                                                              5;
   3,  7,  12                                                        22;
   6, 11,  17,  24                                                   58;
  10, 16,  23,  31,  40                                             120;
  15, 22,  30,  39,  49,  60                                        215;
  21, 29,  38,  48,  59,  71,  84                                   350;
  28, 37,  47,  58,  70,  83,  97, 112                              532;
  36, 46,  57,  69,  82,  96, 111, 127, 144                         768;
  45, 56,  68,  81,  95, 110, 126, 143, 161, 180                   1065;
  55, 67,  80,  94, 109, 125, 142, 160, 179, 199, 220              1430;
  66, 79,  93, 108, 124, 141, 159, 178, 198, 219, 241, 264         1870;
  78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312    2392.
		

Crossrefs

Programs

  • Haskell
    a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
    a245300_row n = map (a245300 n) [0..n]
    a245300_tabl = map a245300_row [0..]
    a245300_list = concat a245300_tabl
    
  • Magma
    [k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
    
  • Mathematica
    Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021

Formula

T(n, 0) = A000217(n).
T(n, n) = A046092(n).
T(2*n, n) = A062725(n) (central terms).
Sum_{k=0..n} T(n, k) = A245301(n).
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000124(n+1) = A134869(n+1), n >= 1.
T(n, 2) = A152948(n+4), n >= 2.
T(n, 3) = A152950(n+4), n >= 3.
T(n, 4) = A145018(n+5), n >= 4.
T(n, 5) = A167499(n+4), n >= 5.
T(n, 6) = A166136(n+5), n >= 6.
T(n, 7) = A167487(n+6), n >= 7.
T(n, n-1) = A056220(n), n >= 1.
T(n, n-2) = A142463(n-1), n >= 2.
T(n, n-3) = A054000(n-1), n >= 3.
T(n, n-4) = A090288(n-3), n >= 4.
T(n, n-5) = A268581(n-4), n >= 5.
T(n, n-6) = A059993(n-4), n >= 6.
T(n, n-7) = (-1)*A147973(n), n >= 7.
T(n, n-8) = A139570(n-5), n >= 8.
T(n, n-9) = A271625(n-5), n >= 9.
T(n, n-10) = A222182(n-4), n >= 10.
T(2*n, n-1) = A081270(n-1), n >= 1.
T(2*n, n+1) = A117625(n+1), n >= 1. (End)

A115990 Riordan array (1/sqrt(1-2*x-3*x^2), (1-2*x-3*x^2)/(2*(1-3*x)) - sqrt(1-2*x-3*x^2)/2).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 5, 3, 1, 19, 13, 8, 4, 1, 51, 35, 22, 12, 5, 1, 141, 96, 61, 35, 17, 6, 1, 393, 267, 171, 101, 53, 23, 7, 1, 1107, 750, 483, 291, 160, 77, 30, 8, 1, 3139, 2123, 1373, 839, 476, 244, 108, 38, 9, 1, 8953, 6046, 3923, 2423, 1406, 752, 360, 147, 47, 10
Offset: 0

Views

Author

Paul Barry, Feb 10 2006

Keywords

Comments

First column is central trinomial coefficients A002426. Second column is number of directed animals of size n+1, A005773(n+1). Row sums are A005717 (number of horizontal steps in all Motzkin paths of length n). First column has e.g.f. exp(x) I_0(2x). Row sums have e.g.f. dif(exp(x) I_1(2x),x).
Riordan array (1/sqrt(1-2*x-3*x^2), (1+x-sqrt(1-2*x-3*x^2))/2).

Examples

			Triangle begins
    1;
    1,  1;
    3,  2,  1;
    7,  5,  3,  1;
   19, 13,  8,  4,  1;
   51, 35, 22, 12,  5,  1;
  141, 96, 61, 35, 17,  6,  1;
		

Crossrefs

Cf. A115991, A005773 (k=1), A025566 (k=2), A035045 (k=3), A152948 (diag. n=k+2), .

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> Binomial(n-k, j-k)*Binomial(j, n-j)) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[(&+[Binomial(n-k, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
    
  • Maple
    A115990 := proc(n,k)
        add(binomial(n-k,j-k)*binomial(j,n-j),j=0..n) ;
    end proc:
    seq(seq(A115990(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 25 2023
  • Mathematica
    Table[Sum[ Binomial[n-k, j-k]*Binomial[j, n-j], {j, 0, n}], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
  • PARI
    {T(n, k) = sum(j=0, n, binomial(n-k, j-k)*binomial(j, n-j))}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[sum(binomial(n-k, j-k)*binomial(j, n-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
    

Formula

Number triangle T(n,k) = Sum_{j=0..n} C(n-k,j-k)*C(j,n-j).

A152949 a(n) = 3 + binomial(n-1,2).

Original entry on oeis.org

3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381
Offset: 1

Views

Author

Keywords

Comments

a(1)=3; then add 0 to the first number, then 1,2,3,4,... and so on.

Crossrefs

Programs

  • GAP
    List([1..55],n->3+Binomial(n-1,2)); # Muniru A Asiru, Oct 28 2018
  • Maple
    seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3,x,n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    s=3;lst={3};Do[s+=n;AppendTo[lst,s],{n,0,5!}];lst
    Table[Binomial[n-1,2],{n,60}]+3 (* Harvey P. Dale, Feb 27 2013 *)
  • PARI
    Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013
    
  • Sage
    [3+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = a(n-1) + n - 2 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010
G.f.: x*(3-6*x+4*x^2)/(1-x)^3. - Nikita Gogin, Jul 24 2013
a(n) = A016028(n+1) for n >= 2. - Georg Fischer, Oct 28 2018
Sum_{n>=1} 1/a(n) = 1/3 + 2*Pi*tanh(sqrt(23)*Pi/2)/sqrt(23). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Sep 05 2025: (Start)
a(n) = (n^2 - 3*n + 8)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
E.g.f.: exp(x)*(8 - 2*x + x^2)/2 - 4. (End)

A236257 a(n) = 2*n^2 - 7*n + 9.

Original entry on oeis.org

9, 4, 3, 6, 13, 24, 39, 58, 81, 108, 139, 174, 213, 256, 303, 354, 409, 468, 531, 598, 669, 744, 823, 906, 993, 1084, 1179, 1278, 1381, 1488, 1599, 1714, 1833, 1956, 2083, 2214, 2349, 2488, 2631, 2778, 2929, 3084, 3243, 3406, 3573, 3744, 3919, 4098, 4281, 4468
Offset: 0

Views

Author

Vladimir Shevelev, Jan 21 2014

Keywords

Comments

If zero polygonal numbers are ignored, then for n >= 3, the a(n)-th n-gonal number is a sum of the (a(n)-1)-th n-gonal number and the (2*n-3)-th n-gonal number.

Examples

			a(7)=58. This means that the 58th heptagonal number 8323 (cf. A000566) is a sum of two heptagonal numbers. We have 8323 = 8037 + 286 with indices in A000566 58,57,11.
		

Crossrefs

Programs

  • Mathematica
    Table[2 n^2 - 7 n + 9, {n, 0, 48}] (* Michael De Vlieger, Apr 19 2015 *)
    LinearRecurrence[{3,-3,1},{9,4,3},50] (* Harvey P. Dale, Nov 24 2017 *)
  • PARI
    Vec(-(18*x^2-23*x+9)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014

Formula

From Colin Barker, Jan 21 2014: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(18*x^2 - 23*x + 9)/(x-1)^3. (End)
E.g.f.: exp(x)*(9 - 5*x + 2*x^2). - Elmo R. Oliveira, Nov 13 2024

A278436 Numbers such that A279966(n) = 0.

Original entry on oeis.org

17, 23, 47, 57, 93, 107, 173, 233, 353, 437, 467, 563, 677, 743, 817, 829, 851, 863, 955, 1037, 1187, 1213, 1277, 1387, 1433, 1487, 1549, 2089, 2147, 2213, 2287, 2293, 2417, 2473, 2689, 2777, 2911, 3083, 3323, 3391, 6691, 9337, 22969, 38557, 47347, 75391, 104999, 130927, 146719
Offset: 1

Views

Author

Alec Jones, Dec 24 2016

Keywords

Comments

Not all numbers in this list are prime; nonprime elements include 57, 93, 437, 817, 851, 955, 1037, 1387, 2147.
This sequence is neither a subset nor a superset of sequence A281533 since 155 and 817 are the first numbers in one, but not the other, respectively. - Hartmut F. W. Hoft, Jan 23 2017

Examples

			Number 817 = 19*43, equivalent to array position (4, 37), is in the sequence since none of the numbers in the prior column, diagonal, row and antidiagonal contain the counts of 1, 19, 43 and 817. - _Hartmut F. W. Hoft_, Jan 23 2017
		

Crossrefs

Programs

  • Mathematica
    (* support functions are in A279967 *)
    a278436[k_] := Module[{ut=upperTriangle[k], ms=Table[" ", {i, 1, k}, {j, 1, k}], h, pos, val, seqL={}}, ms[[1, 1]]=1; For[h=2, h<=Length[ut], h++, pos=ut[[h]]; val=Length[Select[Map[ms[[Apply[Sequence, #]]]&, priorPos[pos]], #!=0 && Mod[seqPos[pos], #]==0&]]; If[val==0, AppendTo[seqL, h]]; ms[[Apply[Sequence, pos]]]=val]; seqL]
    a278436[100] (* data through 3391. - Hartmut F. W. Hoft, Jan 23 2017 *)

A159881 Triangle read by rows : T(n,0) = n+1, T(n,k)=0 if k<0 or if k>n, T(n,k) = k*T(n-1,k) - T(n-1,k-1).

Original entry on oeis.org

1, 2, -1, 3, -3, 1, 4, -6, 5, -1, 5, -10, 16, -8, 1, 6, -15, 42, -40, 12, -1, 7, -21, 99, -162, 88, -17, 1, 8, -28, 219, -585, 514, -173, 23, -1, 9, -36, 466, -1974, 2641, -1379, 311, -30, 1, 10, -45, 968, -6388, 12538, -9536, 3245, -521, 38, -1
Offset: 0

Views

Author

Philippe Deléham, Apr 25 2009

Keywords

Examples

			Triangle begins :
1;
2, -1;
3, -3, 1;
4, -6, 5, -1;
5, -10, 16, -8, 1;
6, -15, 42, -40, 12, -1;
7, -21, 99, -162, 88, -17, 1;
8, -28, 219, -585, 514, -173, 23, -1;
9, -36, 466, -1974, 2641, -1379, 311, -30, 1;
10, -45, 968, -6388, 12538, -9536, 3245, -521, 38, -1;
11, -55, 1981, -20132, 56540, -60218, 29006, -6892, 825, -47, 1;
		

Crossrefs

Programs

  • Maple
    A159881 := proc(n,k) option remember; if k = 0 then n+1; elif k < 0 or k > n then 0 ; else k*procname(n-1,k)-procname(n-1,k-1) ; fi; end: for n from 0 to 10 do for k from 0 to n do printf("%d,",A159881(n,k)) ; od: od: # R. J. Mathar, May 29 2009
  • Mathematica
    T[n_,0]:= n+1; T[n_,k_]:= T[n,k] = If[k < 0 || k > n, 0, k*T[n-1, k] - T[n-1, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {T(n,k) = if(k==0, n+1, if(k<0 || k>n, 0, k*T(n-1,k) - T(n-1,k-1)))};
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 27 2018

Formula

Conjecture row sums: Sum_{k=0..n} |T(n,k)| = A029761(n). - R. J. Mathar, May 29 2009

A214928 A209293 as table read layer by layer clockwise.

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 14, 7, 6, 8, 12, 17, 23, 20, 11, 10, 13, 19, 26, 34, 43, 30, 27, 16, 15, 18, 24, 31, 39, 48, 58, 53, 38, 35, 22, 21, 25, 33, 42, 52, 63, 75, 88, 69, 64, 47, 44, 29, 28, 32, 40, 49, 59, 70, 82, 95, 109, 102, 81, 76, 57, 54, 37, 36, 41, 51, 62
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). The order of the list:
T(1,1)=1;
T(1,2), T(2,2), T(2,1);
. . .
T(1,n), T(2,n), ... T(n-1,n), T(n,n), T(n,n-1), ... T(n,1);
. . .

Examples

			The start of the sequence as table:
  1....2...5...8..13..18...
  3....4...9..12..19..24...
  6....7..14..17..26..31...
  10..11..20..23..34..39...
  15..16..27..30..43..48...
  21..22..35..38..53..58...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  2,4,3;
  5,9,14,7,6;
  8,12,17,23,20,11,10;
  13,19,26,34,43,30,27,16,15;
  18,24,31,39,48,58,53,38,35,22,21;
  . . .
Row number r contains 2*r-1 numbers.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(n-1)))+1
    i=min(t,n-(t-1)**2)
    j=min(t,t**2-n+1)
    m1=int((i+j)/2)+int(i/2)*(-1)**(2*i+j-1)
    m2=int((i+j+1)/2)+int(i/2)*(-1)**(2*i+j-2)
    result=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

As table
T(n,k) = n*n/2+4*(floor((k-1)/2)+1)*n+ceiling((k-1)^2/2), n,k > 0.
As linear sequence
a(n)= (m1+m2-1)*(m1+m2-2)/2+m1, where m1=floor((i+j)/2) + floor(i/2)*(-1)^(2*i+j-1), m2=int((i+j+1)/2)+int(i/2)*(-1)^(2*i+j-2), where i=min(t; n-(t-1)^2), j=min(t; t^2-n+1), t=floor(sqrt(n-1))+1.

A214929 A209293 as table read layer by layer - layer clockwise, layer counterclockwise and so on.

Original entry on oeis.org

1, 3, 4, 2, 5, 9, 14, 7, 6, 10, 11, 20, 23, 17, 12, 8, 13, 19, 26, 34, 43, 30, 27, 16, 15, 21, 22, 35, 38, 53, 58, 48, 39, 31, 24, 18, 25, 33, 42, 52, 63, 75, 88, 69, 64, 47, 44, 29, 28, 36, 37, 54, 57, 76, 81, 102, 109, 95, 82, 70, 59, 49, 40, 32, 41, 51, 62
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Table read by boustrophedonic ("ox-plowing") method. Let m be natural number. The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2);
. . .
T(1,2*m+1), T(2,2*m+1), ... T(2*m,2*m+1), T(2*m+1,2*m+1), T(2*m+1,2*m), ... T(2*m+1,1);
T(2*m,1), T(2*m,2), ... T(2*m,2*m-1), T(2*m,2*m), T(2*m-1,2*m), ... T(1,2*m);
. . .
The first row is layer read clockwise, the second row is layer counterclockwise.

Examples

			The start of the sequence as table:
  1....2...5...8..13..18...
  3....4...9..12..19..24...
  6....7..14..17..26..31...
  10..11..20..23..34..39...
  15..16..27..30..43..48...
  21..22..35..38..53..58...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  3,4,2;
  5,9,14,7,6;
  10,11,20,23,17,12,8;
  13,19,26,34,43,30,27,16,15;
  21,22,35,38,53,58,48,39,31,24,18;
  . . .
Row number r contains 2*r-1 numbers.
		

Crossrefs

Cf. A081344, A209293, A209279, A209278, A185180; table T(n,k) contains: in rows A000982, A097063; in columns A000217, A000124, A000096, A152948, A034856, A152950, A055998, A000982, A097063.

Programs

  • Python
    t=int((math.sqrt(n-1)))+1
    i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)
    j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2)
    m1=int((i+j)/2)+int(i/2)*(-1)**(2*i+j-1)
    m2=int((i+j+1)/2)+int(i/2)*(-1)**(2*i+j-2)
    result=(m1+m2-1)*(m1+m2-2)/2+m1

Formula

As table
T(n,k) = n*n/2+4*(floor((k-1)/2)+1)*n+ceiling((k-1)^2/2), n,k > 0.
As linear sequence
a(n)= (m1+m2-1)*(m1+m2-2)/2+m1, where
m1=floor((i+j)/2) + floor(i/2)*(-1)^(2*i+j-1), m2=int((i+j+1)/2)+int(i/2)*(-1)^(2*i+j-2),
where i=(t mod 2)*min(t; n-(t-1)^2) + (t+1 mod 2)*min(t; t^2-n+1), j=(t mod 2)*min(t; t^2-n+1) + (t+1 mod 2)*min(t; n-(t-1)^2), t=floor(sqrt(n-1))+1.

A238531 Expansion of (1 - x + x^2)^2 / (1 - x)^3 in powers of x.

Original entry on oeis.org

1, 1, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, 1277, 1328, 1380
Offset: 0

Views

Author

Michael Somos, Feb 28 2014

Keywords

Comments

Essentially the same as A152948, A133263 and A089071. - R. J. Mathar, Mar 30 2014

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 17*x^6 + 23*x^7 + 30*x^8 + ...
		

Crossrefs

Cf. A133263.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2)^2/(1-x)^3)); // G. C. Greubel, Aug 07 2018
  • Mathematica
    a[ n_] := (n^2 - n) / 2 + If[ n == 0 || n == 1, 1, 2];
    CoefficientList[Series[(1-x+x^2)^2/(1-x)^3, {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
  • PARI
    {a(n) = (n^2 - n) / 2 + 2 - (n==0) - (n==1)};
    
  • PARI
    {a(n) = if( n<0, n = 1-n); polcoeff( (1 - x + x^2)^2 / (1 - x)^3 + x * O(x^n), n)};
    

Formula

Euler transform of length 6 sequence [1, 2, 2, 0, 0, -2].
Binomial transform of [1, 0, 2, -2, 3, -4, 5, -6, ...].
a(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n.
G.f.: (1 - x + x^2)^2 / (1 - x)^3.
a(n) = a(1 - n) for all n in Z.
a(n + 1) = A133263(n) if n>=0. a(n) = (n^2 - n) / 2 + 2 unless n=0 or n=1.
(1 + x^2 + x^3 + x^4 + ...)*(1 + x + 2x^2 + 3x^3 + 4x^4 + ...) = (1 + x + 3x^2 + 5x^3 + 8x^4 + 12x^5 + ...). - Gary W. Adamson, Jul 27 2010

A173154 a(n) = n^3/6 + 3*n^2/4 + 7*n/3 + 7/8 + (-1)^n/8.

Original entry on oeis.org

1, 4, 10, 19, 33, 52, 78, 111, 153, 204, 266, 339, 425, 524, 638, 767, 913, 1076, 1258, 1459, 1681, 1924, 2190, 2479, 2793, 3132, 3498, 3891, 4313, 4764, 5246, 5759, 6305, 6884, 7498, 8147, 8833, 9556, 10318, 11119, 11961, 12844, 13770, 14739, 15753, 16812, 17918, 19071, 20273, 21524
Offset: 0

Views

Author

Paul Curtz, Feb 11 2010

Keywords

Comments

Generated by reading the table shown in A172002 down the diagonal starting at 1.
The inverse binomial transform yields 1, 3, 3, 0, 2, -4, 8, -16, 32, -64, 128, -256, 512, -1024, ... with a pattern of powers of 2.

Programs

  • Magma
    [n^3/6 + 3*n^2/4 + 7*n/3 + 7/8 + (-1)^n/8: n in [0..50]]; // Vincenzo Librandi, Aug 05 2011
  • Mathematica
    Table[n^3/6+(3n^2)/4+(7n)/3+7/8+(-1)^n/8,{n,0,50}] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,4,10,19,33},50] (* Harvey P. Dale, Jan 04 2012 *)

Formula

G.f.: ( 1 + x - x^3 + x^4 ) / ( (1+x)*(x-1)^4 ).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
a(n+4) - a(n) = 4*A152948(n+5) = 4*A089071(n+5).
First differences: a(n+1) - a(n) = A061925(n+2).
Second differences: a(n+2) - 2*a(n+1) + a(n) = n + 5/2 + (-1)^n/2 = 3, 3, 5, 5, 7, 7, 9, 9, ... , duplicated A144396.
Previous Showing 11-20 of 26 results. Next