cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 94 results. Next

A345001 a(n) = sigma(n) + n' - 2n, where n' is the arithmetic derivative of n (A003415) and sigma is the sum of divisors (A000203).

Original entry on oeis.org

-1, 0, -1, 3, -3, 5, -5, 11, 1, 5, -9, 20, -11, 5, 2, 31, -15, 24, -17, 26, 0, 5, -21, 56, -9, 5, 13, 32, -27, 43, -29, 79, -4, 5, -10, 79, -35, 5, -6, 78, -39, 53, -41, 44, 27, 5, -45, 140, -27, 38, -10, 50, -51, 93, -22, 100, -12, 5, -57, 140, -59, 5, 29, 191, -28, 73, -65, 62, -16, 63, -69, 207, -71, 5, 29, 68
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Coincides with A003415 only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    A003415[n_] := If[n < 2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
    a[n_] := DivisorSigma[1, n] + A003415[n] - 2 n;
    Array[a, 80] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A345001(n) = (sigma(n)+A003415(n)-(2*n));

Formula

a(n) = A003415(n) - A033879(n) = A000203(n) + A003415(n) - 2*n.
a(n) = A001065(n) + A168036(n).
a(n) = A344999(n) / A048250(n) = A345049(n) / A173557(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 + A136141 - 2 = 0.418090735898... . - Amiram Eldar, Dec 08 2023

A322360 Multiplicative with a(p^e) = p^2 - 1.

Original entry on oeis.org

1, 3, 8, 3, 24, 24, 48, 3, 8, 72, 120, 24, 168, 144, 192, 3, 288, 24, 360, 72, 384, 360, 528, 24, 24, 504, 8, 144, 840, 576, 960, 3, 960, 864, 1152, 24, 1368, 1080, 1344, 72, 1680, 1152, 1848, 360, 192, 1584, 2208, 24, 48, 72, 2304, 504, 2808, 24, 2880, 144, 2880, 2520, 3480, 576, 3720, 2880, 384, 3, 4032, 2880
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Comments

Absolute values of A046970, the Dirichlet inverse of the Jordan function J_2 (A007434).
Absolute values of the Möbius transform of A055491. (See Benoit Cloitre's May 31 2002 comment in A046970).

Crossrefs

Absolute values of A046970.

Programs

  • Maple
    a:= n-> mul(i[1]^2-1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 05 2021
  • Mathematica
    a[n_] := If[n==1, 1, Times @@ ((#^2-1)& @@@ FactorInteger[n])]; Array[a, 50]  (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A322360(n) = factorback(apply(p -> (p*p)-1, factor(n)[, 1]));
    
  • PARI
    A322360(n) = abs(sumdiv(n,d,moebius(n/d)*(core(d)^2)));

Formula

Multiplicative with a(p^e) = p^2 - 1.
a(n) = Product_{p prime divides n} (p^2 - 1).
a(n) = abs(A046970(n)).
a(n) = A048250(n) * A173557(n) = A066086(n) * A322359(n).
G.f. for a signed version of the sequence: Sum_{n >= 1} mu(n)*n^2*x^n/(1 - x^n) = Sum_{n >= 1} (-1)^omega(n)*a(n)*x^n = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + 72*x^10 - ..., where mu(n) is the Möbius function A008683(n) and omega(n) = A001221(n) is the number of distinct primes dividing n. - Peter Bala, Mar 05 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (p-1)*(p^2 + 2*p + 2)/(p*(p^2 + p + 1)) = 0.187556464... . - Amiram Eldar, Oct 22 2022
a(n) = A007434(A007947(n)). - Enrique Pérez Herrero, Oct 14 2024

A326297 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)^(k_j - 1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 2, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 03 2020

Keywords

Examples

			a(98) = a(2 * 7^2) = (2 - 1)^(1 - 1) * (7 - 1)^(2 - 1) = 6.
		

Crossrefs

Programs

  • Maple
    seq(mul((p-1)^(padic[ordp](n,p)-1), p in numtheory[factorset](n)), n =1..100); # Ridouane Oudra, Oct 29 2024
  • Mathematica
    a[n_] := If[n == 1, 1, Times @@ ((#[[1]] - 1)^(#[[2]] - 1) & /@ FactorInteger[n])]; Table[a[n], {n, 1, 100}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]--; f[k,2]--); factorback(f); \\ Michel Marcus, Mar 03 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p-1)**(e-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Aug 30 2021

Formula

a(n) = A003958(n) / abs(A023900(n)) = abs(A325126(n)) / A007947(n).
Dirichlet g.f.: Product_{p prime} (1 + 1/(p^s - p + 1)). - Amiram Eldar, Dec 07 2023
a(n) = A003958(n)/A173557(n). - Ridouane Oudra, Oct 29 2024

A299822 Product of Euler's totient and the squarefree kernel, a(n) = phi(n)*rad(n).

Original entry on oeis.org

1, 2, 6, 4, 20, 12, 42, 8, 18, 40, 110, 24, 156, 84, 120, 16, 272, 36, 342, 80, 252, 220, 506, 48, 100, 312, 54, 168, 812, 240, 930, 32, 660, 544, 840, 72, 1332, 684, 936, 160, 1640, 504, 1806, 440, 360, 1012, 2162, 96, 294, 200, 1632, 624, 2756, 108, 2200, 336, 2052, 1624
Offset: 1

Views

Author

R. J. Mathar, Feb 19 2018

Keywords

Comments

A permutation of A323333. - Amiram Eldar, Sep 19 2020

Crossrefs

Programs

  • Maple
    A299822 := proc(n)
        local a,p,e,pe;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ; e:= pe[2] ;
            a := a*p*(p-1)*p^(e-1) ;
        end do:
        a ;
    end proc:
    seq(A299822(n),n=1..130) ;
  • Mathematica
    Array[EulerPhi[#] SelectFirst[Reverse@ Divisors@ #, SquareFreeQ] &, 58] (* Michael De Vlieger, Feb 20 2018 *)
    f[p_, e_] := (p-1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n) = eulerphi(n)*factorback(factorint(n)[, 1]); \\ Michel Marcus, Jun 24 2019

Formula

a(n) = A000010(n)*A007947(n) = n*A173557(n).
Dirichlet g.f.: zeta(s-1)*Product_{p prime} (1 - 2*p^(1-s) + p^(2-s)), corrected by Vaclav Kotesovec, Dec 18 2019
Multiplicative with a(p^e) = p*(p-1)*p^(e-1).
a(n) = n*abs(A023900(n)). (Trivially rephrasing a formula in A173557.) - Omar E. Pol, Feb 19 2018
a(2^e) = 2^e. (Special case of above.) - Omar E. Pol, Feb 19 2018
A003557(n) | a(n). - R. J. Mathar, Feb 26 2018
From Vaclav Kotesovec, Dec 18 2019: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s-2) * Product_{primes p} (1 + 2*p^(3-2*s) - p^(4-2*s) - 2*p^(1-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^3 / 18, where c = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.2867474284344787341078927... (End)
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p-1)^2) = 2.826419... (A065485). - Amiram Eldar, Sep 19 2020
G.f. for a signed version of the sequence: Sum_{n >= 1} mu(n)*n^2*x^n/(1 - x^n)^2 = Sum_{n >= 1} (-1)^omega(n)*a(n)*x^n = x - 2*x^2 - 6*x^3 - 4*x^4 - 20*x^5 + 12*x^6 - 42*x^7 - 8*x^8 - 18*x^9 + 40*x^10 - ..., where mu(n) is the Möbius function A008683(n) and omega(n) = A001221(n) is the number of distinct primes dividing n. - Peter Bala, Mar 05 2022

A304408 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*(k_j + 1)).

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 12, 4, 6, 16, 20, 12, 24, 24, 32, 5, 32, 12, 36, 24, 48, 40, 44, 16, 12, 48, 8, 36, 56, 64, 60, 6, 80, 64, 96, 18, 72, 72, 96, 32, 80, 96, 84, 60, 48, 88, 92, 20, 18, 24, 128, 72, 104, 16, 160, 48, 144, 112, 116, 96, 120, 120, 72, 7, 192, 160, 132, 96, 176, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(20) = a(2^2*5) = (2 - 1)*(2 + 1) * (5 - 1)*(1 + 1) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul((i[1]-1)*(i[2]+1), i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 05 2021
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 70}]
    Table[DivisorSigma[0, n] EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]], {n, 70}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*(e+1))} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*abs(A023900(n)) = A000005(n)*A173557(n) = A000005(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*phi(n) if n is a squarefree (A005117), where omega() = A001221 and phi() = A000010.

A335341 Sum of divisors of A003557(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1, 15, 1, 4, 1, 3, 1, 1, 1, 7, 6, 1, 13, 3, 1, 1, 1, 31, 1, 1, 1, 12, 1, 1, 1, 7, 1, 1, 1, 3, 4, 1, 1, 15, 8, 6, 1, 3, 1, 13, 1, 7, 1, 1, 1, 3, 1, 1, 4, 63, 1, 1, 1, 3, 1, 1, 1, 28, 1, 1, 6, 3, 1, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 02 2020

Keywords

Comments

The sum of the divisors d of n such that n/d is a coreful divisor of n (a coreful divisor of n is a divisor with the same squarefree kernel as n). The number of these divisors is A005361(n). - Amiram Eldar, Jun 30 2023

Crossrefs

Cf. A000203, A003557, A005361 (number of divisors of A003557), A336567.

Programs

  • Maple
    A335341 := proc(n)
        local a,pe,p,e ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if e > 1 then
                a := a*(p^e-1)/(p-1) ;
            end if;
        end do:
        a ;
    end proc:
  • Mathematica
    f[p_, e_] := (p^e-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    a(n) = sigma(n/factorback(factor(n)[, 1])); \\ Michel Marcus, Jun 02 2020

Formula

a(n) = A000203(A003557(n)).
Multiplicative with a(p^1)=1 and a(p^e) = (p^e-1)/(p-1) if e>1.
A057723(n) = A007947(n)*a(n).
a(n) = 1 iff n in A005117.
a(n) = A336567(n) + A003557(n). - Antti Karttunen, Jul 28 2020
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - Amiram Eldar, Sep 09 2023
a(n) = A047994(n)/A173557(n). - Ridouane Oudra, Oct 30 2023

A345051 Numbers k such that A345048(k) is equal to A345049(k).

Original entry on oeis.org

2, 6, 9, 15, 28, 496, 625, 1225, 3993, 8128, 117649, 218491, 857375, 3788435, 4259571, 33550336, 69302975, 136410197, 200533921, 313742585, 603439225, 1516358753, 2563893625, 3326174929, 5655792025, 8589869056, 10214476341
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Numbers k for which A342001(n) * A051709(n) = A173557(n) * A345001(n).
Conjecture: Sequence is a disjoint union of A000396 and A166374, i.e., there are no terms of any other kind.

Crossrefs

Positions of zeros in A345050.
Cf. A000396, A166374 (subsequences).
Cf. also A345003.

Programs

Extensions

a(21)-a(27) from Amiram Eldar, Dec 08 2023

A068997 Numbers k such that Sum_{d|k} d*mu(d) divides k.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 84, 96, 100, 108, 120, 128, 144, 160, 162, 168, 192, 200, 216, 240, 252, 256, 272, 288, 312, 320, 324, 336, 360, 384, 400, 432, 440, 480, 486, 500, 504, 512, 544, 576, 588, 600, 624, 640, 648
Offset: 1

Views

Author

Benoit Cloitre, Apr 07 2002

Keywords

Comments

Numbers k such that A023900(k) divides k.
The only squarefree terms so far are a(1), a(2), and a(4). - Torlach Rush, Dec 04 2017
There are no more squarefree terms. The squarefree terms are also the squarefree terms of A007694 since A023900(n) = A008683(n) * A000010(n) for squarefree numbers n, and A007694 contains only 3-smooth numbers (A003586). - Amiram Eldar, Apr 19 2025
There is a surjective mapping from all even numbers not in this sequence to terms of the sequence. The first such is 10 to a(9). The next is 14, 28, 42 to a(19). All even numbers not in the sequence are divisors of some term in the sequence. - Torlach Rush, Dec 08 2017

Crossrefs

Programs

  • Haskell
    a068997 n = a068997_list !! (n - 1)
    a068997_list = filter (\x -> mod x (a173557 x) == 0) [1..]
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    with(numtheory): A068997 := i->`if`(i mod phi(mul(j,j=factorset(i)))=0,i,NULL): seq(A068997(i),i=1..650); # Peter Luschny, Nov 02 2010
  • Mathematica
    Select[Range[650], Divisible[#, DivisorSum[#, # MoebiusMu[#] &]] &] (* Michael De Vlieger, Nov 20 2017 *)
    q[1] =True; q[n_] := Divisible[n, Times @@ ((First[#] - 1) & /@ FactorInteger[n])]; Select[Range[650], q] (* Amiram Eldar, Apr 19 2025 *)
  • PARI
    for(n=1,1000,if(n%sumdiv(n,d,moebius(d)*d)==0,print1(n,",")))
    
  • PARI
    isok(k) = !(k % vecprod(apply(x -> 1-x, factor(k)[, 1]))); \\ Amiram Eldar, Apr 19 2025
    

A304407 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*k_j).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 3, 4, 4, 10, 4, 12, 6, 8, 4, 16, 4, 18, 8, 12, 10, 22, 6, 8, 12, 6, 12, 28, 8, 30, 5, 20, 16, 24, 8, 36, 18, 24, 12, 40, 12, 42, 20, 16, 22, 46, 8, 12, 8, 32, 24, 52, 6, 40, 18, 36, 28, 58, 16, 60, 30, 24, 6, 48, 20, 66, 32, 44, 24, 70, 12, 72, 36, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (2 - 1)*2 * (3 - 1)*1 * (5 - 1)*1 = 16.
		

Crossrefs

Programs

  • Maple
    seq(mul((p-1)*padic[ordp](n, p), p in numtheory[factorset](n)), n=1..100); # Ridouane Oudra, Jun 06 2025
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 75}]
    Table[EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 75}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*abs(A023900(n)) = A005361(n)*A173557(n) = A005361(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*k where p is a prime and k > 0.
a(n) = phi(n) if n is a squarefree (A005117), where phi() = A000010.
a(A002110(k)) = A005867(k).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - 4/p^2 + 3/p^3 + 1/p^4 - 1/p^5) = 0.2644703894... . - Amiram Eldar, Nov 30 2022
a(n) = (-1)^A001221(n) * (Sum_{d1|n} Sum_{d2|n} mu(d1)*gcd(d1,d2)). - Ridouane Oudra, Jun 06 2025

A305444 a(n) = Product_{p is odd and prime and divisor of n} (p - 2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 9, 1, 11, 5, 3, 1, 15, 1, 17, 3, 5, 9, 21, 1, 3, 11, 1, 5, 27, 3, 29, 1, 9, 15, 15, 1, 35, 17, 11, 3, 39, 5, 41, 9, 3, 21, 45, 1, 5, 3, 15, 11, 51, 1, 27, 5, 17, 27, 57, 3, 59, 29, 5, 1, 33, 9, 65, 15, 21, 15, 69, 1, 71, 35, 3, 17
Offset: 1

Views

Author

Markus Sigg, Aug 12 2018

Keywords

Comments

Denominator of c_n = Product_{odd p| n} (p-1)/(p-2). Numerator is A173557. [Yamasaki and Yamasaki]. - N. J. A. Sloane, Jan 19 2020
This ratio, multiplied by the twin prime constant, occurs in the asymptotic behavior of prime gaps of size 2*n as decribed by the Hardy-Littlewood asymptotic conjecture for the number of prime pairs. See A005597 for more information. - Hugo Pfoertner, Dec 25 2024

Crossrefs

Programs

  • Maple
    A305444 := proc(n) mul(d - 2, d = numtheory[factorset](n) minus {2}) end proc:
  • Mathematica
    a[n_] := If[n == 1, 1, Times @@ (DeleteCases[FactorInteger[n][[All, 1]], 2] - 2)];
    Array[a, 100] (* Jean-François Alcover, Apr 08 2020*)
  • PARI
    a(n)={my(f=factor(n>>valuation(n,2))[,1]); prod(i=1, #f, f[i]-2)} \\ Andrew Howroyd, Aug 12 2018
    
  • Python
    from math import prod
    from sympy import primefactors
    def A305444(n): return prod(p-2 for p in primefactors(n>>(~n&n-1).bit_length())) # Chai Wah Wu, Sep 08 2023

Formula

Sum_{k=1..n} a(k) ~ c * n^2, where c = (2/3) * Product_{p prime} (1 - 3/(p*(p+1))) = 0.1950799046... . - Amiram Eldar, Nov 12 2022
a(n) = abs( Sum_{d divides n, d odd} mobius(d) * phi(d) ). - Peter Bala, Feb 01 2024
a(n) = (-1)^omega(n) * Sum_{d|n} mu(d)*phi(2*d), where omega = A001221. - Ridouane Oudra, Jul 30 2025
Previous Showing 51-60 of 94 results. Next