cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 142 results. Next

A180845 a(n) = (16^n-3^n)/13.

Original entry on oeis.org

0, 1, 19, 313, 5035, 80641, 1290499, 20648713, 330381595, 5286112081, 84577812979, 1353245066713, 21651921244555, 346430740444321, 5542891848703459, 88686269584038313, 1418980313358961915
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) appear in several triangle sums of Nicomachus' table A036561, i.e Gi1(4*n), Gi1(4*n+1)/2, Gi1(4*n+2)/4, Gi1(4*n+3)/8 and Gi4(n). See A180662 for information about these giraffe and other chess sums.

Crossrefs

Programs

Formula

a(n) = (16^n-3^n)/13
G.f.: x/((16*x-1)*(3*x-1))

A185828 Half the number of n X 2 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 3, 10, 23, 61, 162, 421, 1103, 2890, 7563, 19801, 51842, 135721, 355323, 930250, 2435423, 6376021, 16692642, 43701901, 114413063, 299537290, 784198803, 2053059121, 5374978562, 14071876561, 36840651123, 96450076810, 252509579303
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 2 of A185835.

Examples

			Some solutions for 4 X 2 with a(1,1)=0:
  0 0   0 1   0 0   0 0   0 1   0 0   0 0   0 0   0 0   0 0
  1 1   0 1   0 1   1 1   0 1   1 0   0 1   1 1   1 0   0 1
  0 1   0 0   0 1   0 1   1 0   1 0   1 1   1 1   1 1   0 1
  0 0   1 1   0 0   0 1   1 0   0 0   0 0   0 0   0 0   0 1
The logarithmic g.f. begins:
L(x) = x + 3*x^2/2 + 10*x^3/3 + 23*x^4/4 + 61*x^5/5 + 162*x^6/6 + ..., where
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 26*x^5 + 63*x^6 + ... + A051286(n)*x^n/n + ... - _Paul D. Hanna_, Mar 19 2011
		

Crossrefs

Cf. A051286 (exp), A180662 (Fi1).

Programs

  • Maple
    a := proc(n): n*add(binomial(2*n-2*k, 2*k)/(n-k), k=0..n-1) end: seq(a(n), n=1..28); # Johannes W. Meijer, Jun 18 2018
  • PARI
    {a(n)=n*sum(k=0, n-1, binomial(2*n-2*k, 2*k)/(n-k))} /* Paul D. Hanna, Mar 19 2011 */
    
  • PARI
    {a(n)=n*polcoeff(-log( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n))/2, n)} /* Paul D. Hanna, Mar 19 2011 */

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..n-1} C(2n-2k, 2k)/(n-k). - Paul D. Hanna, Mar 19 2011
L.g.f.: Sum_{n>=1} a(n)*x^n/n = -log((1+x+x^2)*(1-3*x+x^2))/2. - Paul D. Hanna, Mar 19 2011
Logarithmic derivative of A051286, which is the Whitney number of level n of the lattice of the ideals of the fence of order 2n. - Paul D. Hanna, Mar 19 2011
Empirical g.f.: x*(1+x+3*x^2-2*x^3)/(1+x+x^2)/(1-3*x+x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = Sum_{k=0..floor(n/2)} A084534(n, 2*k). - Johannes W. Meijer, Jun 17 2018
Empirical: a(n) = A100886(2n). - Wojciech Florek, Jan 26 2020

A050187 a(n) = n * floor((n-1)/2).

Original entry on oeis.org

0, 0, 0, 3, 4, 10, 12, 21, 24, 36, 40, 55, 60, 78, 84, 105, 112, 136, 144, 171, 180, 210, 220, 253, 264, 300, 312, 351, 364, 406, 420, 465, 480, 528, 544, 595, 612, 666, 684, 741, 760, 820, 840, 903, 924, 990, 1012, 1081, 1104, 1176
Offset: 0

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

T(n,2), array T as in A050186; a count of aperiodic binary words.
The Row2 triangle sums A159797 lead to the sequence given above for n >= 1 with a(1)=0. For the definitions of the Row2 and other triangle sums see A180662. - Johannes W. Meijer, May 20 2011
The number of chords joining n equally distributed points on a circle with a length less than the diameter. - Wesley Ivan Hurt, Nov 23 2013
a(n) is the maximum possible length of a circuit in the complete graph on n vertices. - Geoffrey Critzer, May 23 2014
For n > 0, a(n) is half the sum of the perimeters of the distinct rectangles that can be made with positive integer sides such that L + W = n, W < L. For example, a(14) = 84; the rectangles are 1 X 13, 2 X 12, 3 X 11, 4 X 10, 5 X 9, 6 X 8 (the 7 X 7 rectangle is not considered since we have W < L). The sum of the perimeters gives 28 + 28 + 28 + 28 + 28 + 28 = 168, half of which is 84. - Wesley Ivan Hurt, Nov 23 2017
Sum of the middle side lengths of all integer-sided triangles with perimeter 3n whose side lengths are in arithmetic progression (For example, when n=5 there are two triangles with perimeter 3(5) = 15 whose side lengths are in arithmetic progression: [3,5,7] and [4,5,6]; thus a(5) = 5+5 = 10). - Wesley Ivan Hurt, Nov 01 2020

Crossrefs

Programs

Formula

a(n) = n * floor((n-1)/2).
From R. J. Mathar, Aug 08 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x^3*(3+x) / ((1+x)^2*(1-x)^3). (End)
a(n) = binomial(n,2) - (n/2) * ((n+1) mod 2). - Wesley Ivan Hurt, Nov 23 2013
E.g.f.: x*(x*cosh(x) + sinh(x)*(x - 1))/2. - Stefano Spezia, Nov 02 2020

Extensions

Name change by Wesley Ivan Hurt, Nov 23 2013

A115730 a(n) = a(n-3) + A001654(n-1) with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 2, 6, 16, 42, 110, 289, 756, 1980, 5184, 13572, 35532, 93025, 243542, 637602, 1669264, 4370190, 11441306, 29953729, 78419880, 205305912, 537497856, 1407187656, 3684065112, 9645007681, 25250957930, 66107866110
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

The a(n+1) represent the Ca2 and Ze4 sums of the Golden Triangle A180662. Furthermore the a(3*n) represent the Ze1 (terms doubled) and Ca3 sums of the Golden triangle. See A180662 for more information about these and other triangle sums.

Examples

			G.f. = x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 42*x^6 + 110*x^7 + 289*x^8 + ... - _Michael Somos_, Sep 05 2023
		

Crossrefs

Programs

  • Magma
    function A115730(n)
      if n lt 3 then return Floor(n/2);
      else return A115730(n-3) + Fibonacci(n-1)*Fibonacci(n);
      end if; return A115730;
    end function;
    [A115730(n): n in [0..40]]; // G. C. Greubel, Jan 20 2022
    
  • Maple
    nmax:=31: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):=a(n-3) + A001654(n-1) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,2,0,-2,-2,1}, {0,0,1,2,6,16}, 40] (* modified by G. C. Greubel, Jan 20 2022 *)
    a[ n_] := Floor[(2*Fibonacci[2*n+1] + Fibonacci[2*n+2] + 2)/20]; (* Michael Somos, Sep 05 2023 *)
  • PARI
    {a(n) = (2*fibonacci(2*n+1) + fibonacci(2*n+2) + 2)\20}; /* Michael Somos, Sep 05 2023 */
  • Sage
    U=chebyshev_U
    def A115730(n): return (1/60)*((-1)^n*(6 - 5*U(n, 1/2) + 10*U(n-1, 1/2)) - (10 - 9*U(n, 3/2) + 6*U(n-1, 3/2)))
    [A115730(n) for n in (0..40)] # G. C. Greubel, Jan 20 2022
    

Formula

a(n) = -floor(g(Fibonacci(n+1))) where g(x) = (1-x^2)^2/(-4*x^2).
G.f.: x^2/( (1-x)*(1+x)*(1+x+x^2)*(1-3*x+x^2) ). - R. J. Mathar, Jun 20 2015
a(n) - a(n-2) = A182890(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (1/60)*((-1)^n*(6 - 5*ChebyshevU(n, 1/2) + 10*ChebyshevU(n-1, 1/2)) - (10 - 9*ChebyshevU(n, 3/2) + 6*ChebyshevU(n-1, 3/2))). - G. C. Greubel, Jan 20 2022
a(n) = floor((2*Fibonacci(2*n+1) + Fibonacci(2*n+2) + 2)/20). - Michael Somos, Sep 05 2023

Extensions

Corrected and information added by Johannes W. Meijer, Sep 22 2010
Edited by Editors-in-Chief. - N. J. A. Sloane, Jun 20 2015

A126116 a(n) = a(n-1) + a(n-3) + a(n-4), with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 49, 79, 129, 209, 337, 545, 883, 1429, 2311, 3739, 6051, 9791, 15841, 25631, 41473, 67105, 108577, 175681, 284259, 459941, 744199, 1204139, 1948339, 3152479, 5100817, 8253295, 13354113, 21607409, 34961521
Offset: 0

Views

Author

Luis A Restrepo (luisiii(AT)mac.com), Mar 05 2007

Keywords

Comments

This sequence has the same growth rate as the Fibonacci sequence, since x^4 - x^3 - x - 1 has the real roots phi and -1/phi.
The Ca1 sums, see A180662 for the definition of these sums, of triangle A035607 equal the terms of this sequence without the first term. - Johannes W. Meijer, Aug 05 2011

Examples

			G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 11*x^7 + 19*x^8 + 31*x^9 + ...
		

References

  • S. Wolfram, A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002

Crossrefs

Cf. Fibonacci numbers A000045; Lucas numbers A000032; tribonacci numbers A000213; tetranacci numbers A000288; pentanacci numbers A000322; hexanacci numbers A000383; 7th-order Fibonacci numbers A060455; octanacci numbers A079262; 9th-order Fibonacci sequence A127193; 10th-order Fibonacci sequence A127194; 11th-order Fibonacci sequence A127624, A128429.

Programs

  • GAP
    a:=[1,1,1,1];; for n in [5..50] do a[n]:=a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jul 15 2019
  • Magma
    [n le 4 select 1 else Self(n-1) + Self(n-3) + Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2015
    
  • Maple
    # From R. J. Mathar, Jul 22 2010: (Start)
    A010684 := proc(n) 1+2*(n mod 2) ; end proc:
    A000032 := proc(n) coeftayl((2-x)/(1-x-x^2),x=0,n) ; end proc:
    A126116 := proc(n) ((-1)^floor(n/2)*A010684(n)+2*A000032(n))/5 ; end proc: seq(A126116(n),n=0..80) ; # (End)
    with(combinat): A126116 := proc(n): fibonacci(n-1) + fibonacci(floor((n-4)/2)+1)* fibonacci(ceil((n-4)/2)+2) end: seq(A126116(n), n=0..38); # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    LinearRecurrence[{1,0,1,1},{1,1,1,1},50] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    Vec((x-1)*(1+x+x^2)/((x^2+x-1)*(x^2+1)) + O(x^50)) \\ Altug Alkan, Dec 25 2015
    
  • Sage
    ((1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jul 15 2019
    

Formula

From R. J. Mathar, Jul 22 2010: (Start)
G.f.: (1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2)).
a(n) = ( (-1)^floor(n/2) * A010684(n) + 2*A000032(n))/5.
a(2*n) = A061646(n). (End)
From Johannes W. Meijer, Aug 05 2011: (Start)
a(n) = F(n-1) + A070550(n-4) with F(n) = A000045(n).
a(n) = F(n-1) + F(floor((n-4)/2) + 1)*F(ceiling((n-4)/2) + 2). (End)
a(n) = (1/5)*((sqrt(5)-1)*(1/2*(1+sqrt(5)))^n - (1+sqrt(5))*(1/2*(1-sqrt(5)))^n + sin((Pi*n)/2) - 3*cos((Pi*n)/2)). - Harvey P. Dale, Nov 08 2011
(-1)^n * a(-n) = a(n) = F(n) - A070550(n - 6). - Michael Somos, Feb 05 2012
a(n)^2 + 3*a(n-2)^2 + 6*a(n-5)^2 + 3*a(n-7)^2 = a(n-8)^2 + 3*a(n-6)^2 + 6*a(n-3)^2 + 3*a(n-1)^2. - Greg Dresden, Jul 07 2021
a(n) = A293411(n)-A293411(n-1). - R. J. Mathar, Jul 20 2025

Extensions

Edited by Don Reble, Mar 09 2007

A166300 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no UUDD's starting at level 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 10, 22, 50, 113, 260, 605, 1418, 3350, 7967, 19055, 45810, 110637, 268301, 653066, 1594980, 3907395, 9599326, 23643751, 58374972, 144442170, 358136905, 889671937, 2214015802, 5518884019, 13778312440, 34448765740
Offset: 0

Views

Author

Emeric Deutsch, Nov 07 2009

Keywords

Comments

a(n) = A166299(n,0).
a(n) is the number of peakless Motzkin paths of length n with no (1,0)-steps at level 0. Example: a(5)=2 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have UHHHD and UUHDD. - Emeric Deutsch, May 03 2011
From Paul Barry, Mar 31 2011: (Start)
The Hankel transform of a(n+3) is A188444(n+1).
a(n+3) gives the diagonal sums of the triangle A100754.
a(n+3) has g.f. 1/(1-x-x^2/(1-2x+3x^2/(1+2x+x^2/(1-2x-(1/3)x^2/(1-x-(2/3)x^2/(1-2x+(5/2)x^2/(1+2x+(3/2)x^2/(1-...)))))))) (continued fraction) where the coefficients of x^2 have denominators A188442 and numerators A188443. (End)
The Ca1 triangle sums of triangle A175136 lead to this sequence (n>=3). For the definitions of the Ca1 and other triangle sums see A180662. - Johannes W. Meijer, May 06 2011
a(n) is the number of closed Deutsch paths of n steps with all peaks at even height. A Deutsch path is a lattice path of up-steps (1,1) and down-steps (1,-j), j>=1, starting at the origin that never goes below the x-axis, and it is closed if it ends on the x-axis. For example a(5) = 2 counts UUUU4, UU1U2, where U denotes an up-step and a down-step is denoted by its length, and a(6) = 5 counts UUUU13, UUUU22, UUUU31, UU1U11, UU2UU2. - David Callan, Dec 08 2021

Examples

			a(5)=2 because we have UUUDDUUDDD and UUUUUDDDDD.
G.f. = 1 + x^3 + x^4 + 2*x^5 + 5*x^6 + 10*x^7 + 22*x^8 + 50*x^9 + 113*x^10 + ...
		

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2/(1+x+x^2+Sqrt((1+x+x^2)*(1-3*x+x^2))))); // G. C. Greubel, Sep 22 2018
  • Maple
    G := 2/(1+z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
  • Mathematica
    CoefficientList[Series[2/(1+x+x^2+Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • Maxima
    a(n):=sum((j+1)*sum((binomial(j+2*i+1,i)*sum(binomial(k,n-k-j-2*i)*binomial(k+j+2*i,k)*(-1)^(n-k),k,0,n-j-2*i))/(j+2*i+1),i,0,n-j),j,0,n); /*  Vladimir Kruchinin, Mar 07 2016 */
    
  • PARI
    {a(n) = local(A); A = 1 + O(x); for( k=1, ceil(n / 5), A = 1 / (1 - x^3 / (1 - x / (1 - x * A)))); polcoeff( A, n)}; /* Michael Somos, May 12 2012 */
    
  • PARI
    x='x+O('x^40); Vec(2/(1+x+x^2+((1+x+x^2)*(1-3*x+x^2))^(1/2))) \\ Altug Alkan, Sep 23 2018
    

Formula

G.f. = G(z)=2/(1 + z + z^2 + sqrt((1 + z + z^2)*(1 - 3*z + z^2))).
G.f.: 1 / (1 - x^3 / (1 - x / (1 - x / (1 - x^3 / (1 - x / (1 - x / ...)))))). - Michael Somos, May 12 2012
G.f. A(x) satisfies A(x) = 1 / (1 - x^3 / (1 - x / (1 - x *A(x)))). - Michael Somos, May 12 2012
Conjecture: (n+1)*a(n) +2*(-n+1)*a(n-1) +(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (3+sqrt(5))^(n+2) * sqrt(7*sqrt(5)-15) / (2 * sqrt(Pi) * n^(3/2) * 2^(n+9/2)). - Vaclav Kotesovec, Feb 12 2014. Equivalently, a(n) ~ 5^(1/4) * phi^(2*n + 2) / (8 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = Sum_{j=0..n}((j+1)*Sum_{i=0..n-j}((binomial(j+2*i+1,i)*Sum_{k=0..n-j-2*i}(binomial(k,n-k-j-2*i)*binomial(k+j+2*i,k)*(-1)^(n-k)))/(j+2*i+1))). - Vladimir Kruchinin, Mar 07 2016

A180665 Golden Triangle sums: a(n)=a(n-2)+A001654(n) with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 7, 17, 47, 121, 320, 835, 2190, 5730, 15006, 39282, 102847, 269252, 704917, 1845491, 4831565, 12649195, 33116030, 86698885, 226980636, 594243012, 1555748412, 4073002212, 10663258237, 27916772486, 73087059235
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) are the Kn21, Kn22, Kn23, Fi2, and Ze2 sums of the Golden Triangle A180662. Furthermore the a(2*n) are the Kn3, Fi1 (terms doubled) and Ze3 (terms tripled) sums. See A180662 for information about these and other chess sums.

Crossrefs

Programs

  • Maple
    nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: for n from 2 to nmax do a(n) := a(n-2) + A001654(n) od: seq(a(n),n=0..nmax);

Formula

a(n) = a(n-2)+A001654(n) with a(0)=0 and a(1)=1.
GF(x) = (-x)/((x-1)*(x+1)^2*(x^2-3*x+1)).
a(n) = ((-1)^(-n-1)*(15+10*n)-25+(16-4*A)*A^(-n-1)+(16-4*B)*B^(-n-1))/100 with A=(3+sqrt(5))/2 and B=(3-sqrt(5))/2.

A180666 Golden Triangle sums: a(n)=a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.

Original entry on oeis.org

0, 1, 2, 6, 15, 41, 106, 279, 729, 1911, 5001, 13095, 34281, 89752, 234971, 615165, 1610520, 4216400, 11038675, 28899630, 75660210, 198081006, 518582802, 1357667406, 3554419410, 9305590831, 24362353076, 63781468404
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) are the Gi2 sums of the Golden Triangle A180662. See A180662 for information about these giraffe and other chess sums.

Crossrefs

Programs

  • Maple
    nmax:=27: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n)*fibonacci(n+1) od: a(0):=0: a(1):=1: a(2):=2: a(3):=6: for n from 4 to nmax do a(n):=a(n-4)+A001654(n) od: seq(a(n),n=0..nmax);
    A180666 := proc(n)
        option remember;
        if n <=3 then
            op(n+1,[0,1,2,6]) ;
        else
            procname(n-4)+A001654(n) ;
        end if;
    end proc:
    seq(A180666(n),n=0..100 ) ; # R. J. Mathar, Aug 18 2016
  • Mathematica
    Take[Total@{#, PadLeft[Drop[#, -4], Length@ #]}, Length@ # - 4] &@ Table[Times @@ Fibonacci@ {n, n + 1}, {n, 0, 31}] (* or *)
    CoefficientList[Series[(-x)/((x^2 - 3 x + 1) (x - 1) (x + 1)^2 (x^2 + 1)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 18 2016 *)

Formula

a(n) = a(n-4)+A001654(n) with a(0)=0, a(1)=1, a(2)=2 and a(3)=6.
G.f.: (-x)/((x^2-3*x+1)*(x-1)*(x+1)^2*(x^2+1)).
a(n) = Sum_{k=0..floor(n/4)} A180662(n-3*k,n-4*k).
120*a(n) = 8*A001519(n) -10*A087960(n) -9*(-1)^n -15 -6*(n+1)*(-1)^n. - R. J. Mathar, Aug 18 2016

A180844 a(n) = (27^n - 2^n)/25.

Original entry on oeis.org

0, 1, 29, 787, 21257, 573955, 15496817, 418414123, 11297181449, 305023899379, 8235645283745, 222362422662139, 6003785411879801, 162102206120758723, 4376759565260493713, 118172508262033346635, 3190657723074900391913
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) appear in several triangle sums of Nicomachus's table A036561, i.e., Ca2(3*n), Ca2(3*n+1)/3, Ca2(3*n+2)/9 and Ca3(n). See A180662 for information about these camel sums and other chess sums.

Crossrefs

Programs

  • Mathematica
    (#[[1]]-#[[2]])/25&/@Partition[Riffle[27^Range[0,20],2^Range[0,20]],2]  (* Harvey P. Dale, Jan 22 2011 *)
  • PARI
    a(n) = (27^n - 2^n)/25 \\ Iain Fox, Dec 12 2017
    
  • PARI
    first(n) = Vec(x/((27*x-1)*(2*x-1)) + O(x^n), -n) \\ Iain Fox, Dec 12 2017

Formula

a(n) = (27^n - 2^n)/25.
G.f.: x/((27*x-1)*(2*x-1)).

A180846 a(n) = (81^n - 2^n)/79.

Original entry on oeis.org

0, 1, 83, 6727, 544895, 44136511, 3575057423, 289579651327, 23455951757615, 1899932092367071, 153894499481733263, 12465454458020395327, 1009701811099652023535, 81785846699071813910431, 6624653582624816926753103
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) appear in several triangle sums of Nicomachus's table A036561, i.e., Gi2(4*n), Gi2(4*n+1)/2, Gi2(4*n+2)/4, Gi2(4*n+3)/8 and Gi3(n). See A180662 for information about these giraffe and other chess sums.

Crossrefs

Programs

Formula

a(n) = (81^n - 2^n)/79.
G.f.: x/((81*x-1)*(2*x-1)).
Previous Showing 81-90 of 142 results. Next