cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A005901 Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0, a(n) = 10n^2 + 2. Also coordination sequence for f.c.c. or A_3 or D_3 lattice.

Original entry on oeis.org

1, 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002, 1212, 1442, 1692, 1962, 2252, 2562, 2892, 3242, 3612, 4002, 4412, 4842, 5292, 5762, 6252, 6762, 7292, 7842, 8412, 9002, 9612, 10242, 10892, 11562, 12252, 12962, 13692, 14442, 15212, 16002
Offset: 0

Views

Author

N. J. A. Sloane, R. Vaughan

Keywords

Comments

Sequence found by reading the segment (1, 12) together with the line from 12, in the direction 12, 42, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

References

  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF4
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #1.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • S. Rosen, Wizard of the Dome: R. Buckminster Fuller; Designer for the Future. Little, Brown, Boston, 1969, p. 109.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A005902.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    [n eq 0 select 1 else 2*(5*n^2+1): n in [0..55]]; // G. C. Greubel, May 25 2023
    
  • Mathematica
    Join[{1},10*Range[40]^2+2] (* or *) Join[{1},LinearRecurrence[{3,-3,1},{12,42,92},40]] (* Harvey P. Dale, May 28 2014 *)
  • PARI
    a(n)=if(n<0,0,10*n^2+1+(n>0))
    
  • SageMath
    [2*(5*n^2 + 1)-int(n==0) for n in range(56)] # G. C. Greubel, May 25 2023

Formula

G.f.: (1+x)*(1+8*x+x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
G.f. for coordination sequence for A_n lattice is (1-z)^(-n) * Sum_{i=0..n} binomial(n, i)^2*z^i. [Bacher et al.]
a(n+1) = A027599(n+2) + A092277(n+1) - Creighton Dement, Feb 11 2005
a(n) = 2 + A033583(n), n >= 1. - Omar E. Pol, Jul 18 2012
a(n) = 12 + 24*(n-1) + 8*A000217(n-2) + 6*A000290(n-1). The properties of the cuboctahedron, namely, its number of vertices (12), edges (24), and faces as well as face-type (8 triangles and 6 squares), are involved in this formula. - Peter M. Chema, Mar 26 2017
a(n) = A062786(n) + A062786(n+1). - R. J. Mathar, Feb 28 2018
E.g.f.: -1 + 2*(1 + 5*x + 5*x^2)*exp(x). - G. C. Greubel, May 25 2023
Sum{n>=0} 1/a(n) = 3/4 + Pi*sqrt(5)*coth(Pi/sqrt 5)/20 = 1.14624... - R. J. Mathar, Apr 27 2024

A007202 Crystal ball sequence for hexagonal close-packing.

Original entry on oeis.org

1, 13, 57, 153, 323, 587, 967, 1483, 2157, 3009, 4061, 5333, 6847, 8623, 10683, 13047, 15737, 18773, 22177, 25969, 30171, 34803, 39887, 45443, 51493, 58057, 65157, 72813, 81047, 89879, 99331, 109423, 120177, 131613, 143753, 156617
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A007899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    Table[Floor[(7((n+1)^4-n^4)+4)/8],{n,0,40}] (* or *) LinearRecurrence[ {3,-2,-2,3,-1},{1,13,57,153,323},40] (* Harvey P. Dale, Jul 15 2011 *)
  • PARI
    j=[]; for(n=0,75,j=concat(j,round((7/8)*((n+1)^4-n^4)))); j
    
  • Python
    def a(n): return round((7/8)*((n+1)**4-n**4))
    print([a(n) for n in range(36)]) # Michael S. Branicky, Jan 13 2021

Formula

Nearest integer to (7/8)*( (n+1)^4 - n^4 ).
G.f.: (x^4+10*x^3+20*x^2+10*x+1)/(x-1)^4/(x+1).
a(n) = 7*(2*n+1)*(2*n^2+2*n+1)/8 +(-1)^n/8. - R. J. Mathar, Mar 24 2011
a(0)=1, a(1)=13, a(2)=57, a(3)=153, a(4)=323, a(n)=3*a(n-1)- 2*a(n-2)- 2*a(n-3)+3*a(n-4)-a(n-5). - Harvey P. Dale, Jul 15 2011
E.g.f.: ((4 + 49*x + 63*x^2 + 14*x^3)*cosh(x) + (3 + 49*x + 63*x^2+ 14*x^3)*sinh(x))/4. - Stefano Spezia, Mar 14 2024

Extensions

More terms from Jason Earls, Jul 14 2001

A007899 Coordination sequence for hexagonal close-packing.

Original entry on oeis.org

1, 12, 44, 96, 170, 264, 380, 516, 674, 852, 1052, 1272, 1514, 1776, 2060, 2364, 2690, 3036, 3404, 3792, 4202, 4632, 5084, 5556, 6050, 6564, 7100, 7656, 8234, 8832, 9452, 10092, 10754, 11436, 12140, 12864, 13610, 14376, 15164, 15972, 16802, 17652, 18524, 19416, 20330, 21264, 22220
Offset: 0

Views

Author

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #2.

Crossrefs

For partial sums see A007202.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    I:=[1,12,44,96,170]; [n le 5 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 16 2014
    
  • Magma
    [1] cat [2 + Floor(21*n^2/2): n in [1..50]]; // G. C. Greubel, Feb 20 2018
  • Mathematica
    Join[{1},Floor[(21Range[40]^2)/2]+2] (* or *) Join[{1},LinearRecurrence[ {2,0,-2,1},{12,44,96,170},40]] (* Harvey P. Dale, Feb 15 2014 *)
    CoefficientList[Series[(x^4 + 10 x^3 + 20 x^2 + 10 x + 1)/(1 - x)^3/(x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 16 2014 *)
  • PARI
    for(n=0,50, print1(if(n==0,1, 2 + floor(21*n^2/2)), ", ")) \\ G. C. Greubel, Feb 20 2018
    

Formula

a(n) = floor( 21*n^2 / 2 ) + 2, for n>= 1.
G.f.: (x^4 +10*x^3 +20*x^2 +10*x +1)/((1+x)*(1-x)^3).
a(0)=1, a(1)=12, a(2)=44, a(3)=96, a(4)=170, a(n)=2*a(n-1)-2*a(n-3)+ a(n-4). - Harvey P. Dale, Feb 15 2014
a(n) = (21/2)*n^2 + 7/4 + (1/4)*(-1)^n - 0^n. - Eric Simon Jacob, Feb 12 2023
E.g.f.: ((4 + 21*x + 21*x^2)*cosh(x) + 3*(1 + 7*x + 7*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Mar 14 2024

A010001 a(0) = 1, a(n) = 5*n^2 + 2 for n>0.

Original entry on oeis.org

1, 7, 22, 47, 82, 127, 182, 247, 322, 407, 502, 607, 722, 847, 982, 1127, 1282, 1447, 1622, 1807, 2002, 2207, 2422, 2647, 2882, 3127, 3382, 3647, 3922, 4207, 4502, 4807, 5122, 5447, 5782, 6127, 6482, 6847, 7222, 7607, 8002, 8407, 8822, 9247, 9682, 10127, 10582
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3^3.4^2 2D tiling (cf. A008706). - N. J. A. Sloane, Feb 07 2018

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #13.

Crossrefs

See A063489 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

Formula

G.f.: (1+x)*(1+3*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*5+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(10)/20*Pi*coth( Pi/5 *sqrt 10) = 1.2657655... - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A299279 Coordination sequence for "reo" 3D uniform tiling.

Original entry on oeis.org

1, 8, 30, 68, 126, 180, 286, 348, 510, 572, 798, 852, 1150, 1188, 1566, 1580, 2046, 2028, 2590, 2532, 3198, 3092, 3870, 3708, 4606, 4380, 5406, 5108, 6270, 5892, 7198, 6732, 8190, 7628, 9246, 8580, 10366, 9588, 11550, 10652, 12798, 11772, 14110, 12948, 15486, 14180
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #7.

Crossrefs

See A299280 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 8, 30, 68, 126, 180, 286, 348}, 50] (* Paolo Xausa, Jan 16 2025 *)
  • PARI
    Vec((1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

G.f.: (4*x^7 - 3*x^6 + 39*x^4 + 44*x^3 + 27*x^2 + 8*x + 1) / (1 - x^2)^3.
From Colin Barker, Feb 11 2018: (Start)
a(n) = 8*n^2 - 2 for even n > 1.
a(n) = 7*n^2 + 5 for odd n > 1.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>7. (End)
E.g.f.: 3 - 4*x + (8*x^2 + 7*x - 2)*cosh(x) + (7*x^2 + 8*x + 5)*sinh(x). - Stefano Spezia, Jun 06 2024

A299255 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.3.4.3.4 2D tiling (cf. A219529).

Original entry on oeis.org

1, 7, 23, 50, 87, 135, 194, 263, 343, 434, 535, 647, 770, 903, 1047, 1202, 1367, 1543, 1730, 1927, 2135, 2354, 2583, 2823, 3074, 3335, 3607, 3890, 4183, 4487, 4802, 5127, 5463, 5810, 6167, 6535, 6914, 7303, 7703, 8114, 8535, 8967, 9410, 9863, 10327, 10802, 11287, 11783, 12290, 12807, 13335
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #14.

Crossrefs

Cf. A219529.
See A299261 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A099837.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{1,7,23,50,87,135},60] (* Harvey P. Dale, Apr 01 2018 *)
  • PARI
    Vec((1 + x)^5 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

G.f.: (x + 1)^5 / ((x^2 + x + 1)*(1 - x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. - Colin Barker, Feb 09 2018
a(n) = 2*(8 + 24*n^2 + A099837(n+3)/2)/9 for n > 0. - Stefano Spezia, Jun 06 2024

A299256 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).

Original entry on oeis.org

1, 6, 18, 40, 72, 112, 162, 220, 288, 364, 450, 544, 648, 760, 882, 1012, 1152, 1300, 1458, 1624, 1800, 1984, 2178, 2380, 2592, 2812, 3042, 3280, 3528, 3784, 4050, 4324, 4608, 4900, 5202, 5512, 5832, 6160, 6498, 6844, 7200, 7564, 7938, 8320, 8712, 9112, 9522, 9940, 10368, 10804, 11250, 11704
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.

Crossrefs

Cf. A008579.
For partial sums see A299262.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • GAP
    a:=[18,40,72,112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1,6],a); # Muniru A Asiru, Oct 26 2018
  • Magma
    [1, 6] cat [9*n^2 div 2: n in [2..50]]; // Vincenzo Librandi, Oct 26 2018
    
  • Maple
    seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* Vincenzo Librandi, Oct 26 2018 *)
  • PARI
    Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 09 2018
    

Formula

G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).
From Colin Barker, Feb 09 2018: (Start)
a(n) = 9*n^2 / 2 for n>1.
a(n) = (9*n^2 - 1) / 2 for n>1.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)
E.g.f.: (2 + 4*x + 9*x*(x + 1)*cosh(x) + (9*x^2 + 9*x - 1)*sinh(x))/2. - Stefano Spezia, Mar 14 2024

A299257 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.12.12 2D tiling (cf. A250122).

Original entry on oeis.org

1, 5, 12, 22, 36, 56, 82, 111, 144, 183, 226, 272, 324, 382, 442, 505, 576, 653, 730, 810, 900, 996, 1090, 1187, 1296, 1411, 1522, 1636, 1764, 1898, 2026, 2157, 2304, 2457, 2602, 2750, 2916, 3088, 3250, 3415, 3600, 3791, 3970, 4152, 4356, 4566, 4762, 4961, 5184, 5413, 5626, 5842, 6084, 6332
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #19.

Crossrefs

Cf. A250122.
Partial sums: A299263.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {1, 5, 12, 22, 36, 56, 82, 111, 144, 183}, 60] (* Paolo Xausa, Jun 20 2024 *)
  • PARI
    Vec((1 + x)*(1 + x + x^2 + 3*x^3 - x^4 + 5*x^5 - 3*x^6 + 4*x^7 - 2*x^8) / ((1 - x)^3*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

G.f.: (2*x^8 - 4*x^7 + 3*x^6 - 5*x^5 + x^4 - 3*x^3 - x^2 - x - 1)*(x + 1) / ((x - 1)^3*(x^2 + 1)^2).
From Colin Barker, Feb 09 2018: (Start)
a(n) = (4 - (2+8*i)*(-i)^n - (2-8*i)*i^n + i*((-i)^n-i^n)*n + 18*n^2) / 8 for n>2, where i=sqrt(-1).
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>9. (End)
a(n) = 1/2 + 9*n^2/4 + (-1)^floor(n/2)*(A027656(n-1)/2 - A010699(n)/4). - R. J. Mathar, Feb 12 2021

A299258 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.6.12 2D tiling (cf. A072154).

Original entry on oeis.org

1, 5, 13, 25, 41, 62, 89, 121, 157, 197, 242, 293, 349, 409, 473, 542, 617, 697, 781, 869, 962, 1061, 1165, 1273, 1385, 1502, 1625, 1753, 1885, 2021, 2162, 2309, 2461, 2617, 2777, 2942, 3113, 3289, 3469, 3653, 3842, 4037, 4237, 4441, 4649, 4862, 5081, 5305, 5533, 5765, 6002, 6245, 6493, 6745
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #23.

Crossrefs

Cf. A072154.
Partial sums: A299264.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,0,1,-2,1},{1,5,13,25,41,62,89,121},60] (* Harvey P. Dale, Mar 14 2023 *)
  • PARI
    Vec((1 + x)^3*(1 - x + x^2)*(1 + x + x^2) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

G.f.: (x^2+x+1)*(x^2-x+1)*(x+1)^3 / ((x^4+x^3+x^2+x+1)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>7. - Colin Barker, Feb 09 2018
a(n) ~ 12*n^2/5. - Stefano Spezia, Jun 06 2024

A299259 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.8.8 2D tiling (cf. A008576).

Original entry on oeis.org

1, 5, 13, 26, 45, 69, 98, 133, 173, 218, 269, 325, 386, 453, 525, 602, 685, 773, 866, 965, 1069, 1178, 1293, 1413, 1538, 1669, 1805, 1946, 2093, 2245, 2402, 2565, 2733, 2906, 3085, 3269, 3458, 3653, 3853, 4058, 4269, 4485, 4706, 4933, 5165, 5402, 5645, 5893, 6146, 6405, 6669, 6938, 7213, 7493
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2018

Keywords

Crossrefs

Partial sums give A299265.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    I:=[13, 26, 45, 69, 98]; [1,5] cat [n le 5 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-3) - 2*Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 20 2018
  • Mathematica
    CoefficientList[Series[(x+1)^3*(x^2+1)/((1-x)^3*(x^2+x+1)), {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
  • PARI
    Vec((1 + x)^3*(1 + x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
    

Formula

G.f.: (x + 1)^3*(x^2 + 1) / ((1 - x)^3*(x^2 + x + 1)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. - Colin Barker, Feb 09 2018
a(n) = (4*(5 + 6*n^2) + A061347(n))/9 for n > 0. - Stefano Spezia, Feb 17 2024
Previous Showing 11-20 of 50 results. Next