cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A371188 Indices of the squarefree numbers in the sequence of cubefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 40, 41, 44, 46, 47, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 62, 63, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 79, 80, 81, 82, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2024

Keywords

Comments

The asymptotic density of this sequence is zeta(3)/zeta(2) = 0.730762... (A253905).

Examples

			The first 5 cubefree numbers are 1, 2, 3, 4, and 5. The 1st, 2nd, 3rd, and 5th, 1, 2, 3, and 5, are squarefree. Therefore, the first 4 terms of this sequence are 1, 2, 3, and 5.
		

Crossrefs

Programs

  • Mathematica
    freeQ[n_, k_] := AllTrue[FactorInteger[n], Last[#] < k &]; Position[Select[Range[200], freeQ[#, 3] &], _?(freeQ[#1, 2] &), Heads -> False] // Flatten
  • PARI
    isfree(n, k) = n == 1 || vecmax(factor(n)[, 2]) < k;
    lista(kmax) = {my(c = 0); for(k = 1, kmax, if(isfree(k, 3), c++; if(isfree(k, 2), print1(c, ", "))));}

Formula

A004709(a(n)) = A005117(n).
a(n) ~ c * n, where c = zeta(2)/zeta(3) = 1.368432... (A306633).

A374783 Numerator of the mean unitary abundancy index of the unitary divisors of n.

Original entry on oeis.org

1, 5, 7, 9, 11, 35, 15, 17, 19, 11, 23, 21, 27, 75, 77, 33, 35, 95, 39, 99, 5, 115, 47, 119, 51, 135, 55, 135, 59, 77, 63, 65, 161, 175, 33, 19, 75, 195, 63, 187, 83, 25, 87, 207, 209, 235, 95, 77, 99, 51, 245, 243, 107, 275, 23, 255, 91, 295, 119, 231, 123, 315
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

The unitary abundancy index of a number k is A034448(k)/k = A332882(k)/A332883(k).
The record values of a(n)/A374784(n) are attained at the primorial numbers (A002110).
The least number k such that a(k)/A374784(k) is larger than 2, 3, 4, ..., is A002110(9) = 223092870, A002110(314) = 7.488... * 10^878, A002110(65599) = 5.373... * 10^356774, ... .

Examples

			For n = 4, 4 has 2 unitary divisors, 1 and 4. Their unitary abundancy indices are usigma(1)/1 = 1 and usigma(4)/4 = 5/4, and their mean unitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + 1/(2*p^e); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])));}

Formula

Let f(n) = a(n)/A374784(n). Then:
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} usigma(d)/d) / ud(n), where usigma(n) is the sum of unitary divisors of n (A034448), and ud(n) is their number (A034444).
f(n) is multiplicative with f(p^e) = 1 + 1/(2*p^e).
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} d*ud(d))/(n*ud(n)) = A343525(n)/(n*A034444(n)).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/(2*p^(s+1)) - 1/(2*p^(2*s+1))).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 + 1/(2*p*(p+1))) = 1.17443669198552182119... . For comparison, the asymptotic mean of the unitary abundancy index over all the positive integers is zeta(2)/zeta(3) = 1.368432... (A306633).
Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).

A328258 a(n) = Sum_{d|n, gcd(d,n/d) = 1} (-1)^(d + 1) * d.

Original entry on oeis.org

1, -1, 4, -3, 6, -4, 8, -7, 10, -6, 12, -12, 14, -8, 24, -15, 18, -10, 20, -18, 32, -12, 24, -28, 26, -14, 28, -24, 30, -24, 32, -31, 48, -18, 48, -30, 38, -20, 56, -42, 42, -32, 44, -36, 60, -24, 48, -60, 50, -26, 72, -42, 54, -28, 72, -56, 80, -30, 60, -72, 62, -32, 80, -63, 84
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Comments

Excess of sum of odd unitary divisors of n over sum of even unitary divisors of n.
a(n) = n+1 iff n is in A061345 \ {1}. - Bernard Schott, Mar 05 2023

Crossrefs

Programs

  • Magma
    [&+[(-1)^(d+1)*d:d in Divisors(n)|Gcd(d, n div d) eq 1]:n in [1..70]]; // Marius A. Burtea, Oct 10 2019
    
  • Maple
    f:= proc(n) local t;
      mul(1 - (-1)^t[1] * t[1]^t[2], t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 10 2019
  • Mathematica
    a[n_] := Sum[Boole[GCD[d, n/d] == 1] (-1)^(d + 1) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
    a[1] = 1; a[n_] := Times @@ (1 - (-1)^First[#] First[#]^Last[#] & /@ FactorInteger[n]); Table[a[n], {n, 1, 65}]
  • PARI
    a(n) = sumdiv(n, d, if (gcd(d,n/d) == 1, (-1)^(d + 1) * d)); \\ Michel Marcus, Oct 10 2019

Formula

If n = Product (p_j^k_j) then a(n) = Product (1 - (-1)^p_j * p_j^k_j).
If n odd, a(n) = usigma(n), where usigma = A034448.
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(14*zeta(3)) = A306633 / 14 = 0.0977451... . - Amiram Eldar, Nov 17 2022
From Amiram Eldar, Jan 28 2023: (Start)
a(n) = 2 * A192066(n) - A034448(n).
a(n) = A192066(n) - A360156(n/2) if n is even, and A192066(n) otherwise.
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(2*s)-2^(s+2)+2)/(2^(2*s)-2). (End)

A332882 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j^k_j).

Original entry on oeis.org

1, 3, 4, 5, 6, 2, 8, 9, 10, 9, 12, 5, 14, 12, 8, 17, 18, 5, 20, 3, 32, 18, 24, 3, 26, 21, 28, 10, 30, 12, 32, 33, 16, 27, 48, 25, 38, 30, 56, 27, 42, 16, 44, 15, 4, 36, 48, 17, 50, 39, 24, 35, 54, 14, 72, 9, 80, 45, 60, 2, 62, 48, 80, 65, 84, 24, 68, 45, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of unitary divisors of n.

Examples

			1, 3/2, 4/3, 5/4, 6/5, 2, 8/7, 9/8, 10/9, 9/5, 12/11, 5/3, 14/13, 12/7, 8/5, 17/16, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+i[1]^i[2], i=ifactors(n)[2])/n):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]]^#[[2]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[If[GCD[d, n/d] == 1,  1/d, 0], {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    a(n) = numerator(sumdiv(n, d, if (gcd(d, n/d)==1, 1/d))); \\ Michel Marcus, Feb 28 2020

Formula

a(n) = numerator of Sum_{d|n, gcd(d, n/d) = 1} 1/d.
a(n) = numerator of usigma(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A034448(n) / A323166(n). - Antti Karttunen, Nov 13 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332883(k) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Nov 21 2022

A367171 The sum of divisors of the largest unitary divisor of n that is a term of A138302.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 1, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 4, 31, 42, 1, 56, 30, 72, 32, 1, 48, 54, 48, 91, 38, 60, 56, 6, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 3, 72, 8, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], (p^(e+1)-1)/(p-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 << valuation(f[i, 2], 2), (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1), 1));}

Formula

Multiplicative with a(p^e) = (p^(A048298(e)+1)-1)/(p-1).
a(n) = A000203(A367168(n)).
a(n) <= A000203(n), with equality if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)/zeta(3) = 1.368432... (A306633).

A342534 a(n) = Sum_{k=1..n} phi(gcd(k, n))^2.

Original entry on oeis.org

1, 2, 6, 7, 20, 12, 42, 26, 50, 40, 110, 42, 156, 84, 120, 100, 272, 100, 342, 140, 252, 220, 506, 156, 484, 312, 438, 294, 812, 240, 930, 392, 660, 544, 840, 350, 1332, 684, 936, 520, 1640, 504, 1806, 770, 1000, 1012, 2162, 600, 2022, 968, 1632, 1092, 2756, 876, 2200, 1092, 2052
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^2 &]; Array[a, 50] (* Amiram Eldar, Mar 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^2);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^2);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^2.
a(n) = Sum_{k=1..n} phi(gcd(k,n))*phi(n/gcd(k,n)). - Richard L. Ollerton, May 10 2021
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p-1)*(p^(e-2) - p^(2*e-3) + p^(2*e-1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)/(3*zeta(3)) * Product_{p prime} (1 - (2*p-1)/p^3) = A306633 * A065464 / 3 = 0.195343... . (End)

A033457 GCD-convolution of squares A000290 with themselves.

Original entry on oeis.org

1, 2, 6, 4, 19, 6, 28, 24, 45, 10, 98, 12, 79, 94, 120, 16, 201, 18, 238, 164, 171, 22, 436, 120, 229, 234, 426, 28, 695, 30, 496, 352, 369, 370, 1014, 36, 451, 470, 1068, 40, 1261, 42, 946, 1020, 639, 46, 1832, 336, 1225, 754, 1278, 52, 1899, 774, 1924, 920, 981
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[d^2*EulerPhi[(n + 2)/d], {d, Most@ Divisors[n + 2]}], {n, 0, 47}] (* Michael De Vlieger, Mar 20 2015 *)
    f[p_, e_] := p^(e - 1)*(p^e*(p + 1) - 1); a[n_] := Times @@ f @@@ FactorInteger[n + 2] - (n + 2)^2; Array[a, 100, 0] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    a(n) = {my(f = factor(n+2)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(e-1)*(p^e*(p+1) - 1)) - (n+2)^2;} \\ Amiram Eldar, Dec 06 2024
  • Sage
    sum([d^2*euler_phi(int((n+2)/d)) for d in range(1,n+2) if (n+2)%d==0]) # Danny Rorabaugh, Mar 20 2015
    

Formula

a(n-2) = Sum_{d|n, dVladeta Jovovic, Aug 27 2003
From Amiram Eldar, Dec 06 2024: (Start)
a(n) = A069097(n+2) - (n+2)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/zeta(3) - 1)/3 = (A306633 - 1)/3 = 0.122810925... . (End)

A072158 Numerator of Sum_{k=1..n} phi(k)/k^3.

Original entry on oeis.org

1, 9, 259, 1063, 136331, 15259, 5305837, 21351973, 1740485813, 1745820149, 2337022458319, 2341131255319, 5164765371583843, 5173292359195843, 5182536034853059, 20760610355567611, 102246457919648504843, 3789825999242633809, 26045507479622115279931, 26064975970269506857723
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 9/8, 259/216, 1063/864, 136331/108000, 15259/12000, ...
		

Crossrefs

Programs

  • GAP
    List([1..25], n-> NumeratorRat( Sum([1..n], k-> Phi(k)/k^3) ) ); # G. C. Greubel, Aug 26 2019
  • Magma
    [Numerator( &+[EulerPhi(k)/k^3: k in [1..n]] ): n in [1..25]]; // G. C. Greubel, Aug 26 2019
    
  • Maple
    with(numtheory); seq(numer(add(phi(k)/k^3, k = 1..n)), n = 1..25); # G. C. Greubel, Aug 26 2019
  • Mathematica
    Numerator[Table[Sum[EulerPhi[k]/k^3,{k,n}],{n,20}]] (* Harvey P. Dale, May 27 2012 *)
    Numerator[Accumulate[Table[EulerPhi[k]/k^3, {k, 1, 30}]]] (* Amiram Eldar, Dec 28 2024 *)
  • PARI
    a(n) = numerator( sum(k=1, n, eulerphi(k)/k^3)); \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [numerator( sum(euler_phi(k)/k^3 for k in (1..n)) ) for n in (1..25)] # G. C. Greubel, Aug 26 2019
    

Formula

Limit_{n->oo} a(n)/A072159(n) = zeta(2)/zeta(3) = 1.368432... (A306633). - Amiram Eldar, Dec 28 2024

A073245 Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.

Original entry on oeis.org

1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2002

Keywords

Examples

			14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
		

Crossrefs

Programs

  • Mathematica
    Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, divisor_sigma
    def A073245(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m*divisor_sigma(m) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A062822(n)*A005117(n).
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
a(n) = A064987(A005117(n)). - Michel Marcus, Oct 18 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)^3/(3*zeta(3)) = 1.23423882415851340020... . - Amiram Eldar, Oct 09 2023

A327574 Decimal expansion of the constant that appears in the asymptotic formula for average order of the infinitary divisors sum function (A049417).

Original entry on oeis.org

7, 3, 0, 7, 1, 8, 2, 4, 2, 1, 2, 7, 3, 8, 4, 2, 2, 5, 8, 3, 8, 9, 7, 5, 4, 6, 8, 1, 7, 3, 5, 3, 0, 1, 6, 1, 9, 5, 7, 2, 5, 6, 4, 3, 3, 8, 6, 1, 7, 2, 7, 8, 6, 9, 7, 0, 7, 3, 3, 6, 7, 6, 2, 3, 0, 1, 0, 7, 9, 8, 8, 3, 3, 2, 8, 0, 0, 5, 3, 4, 6, 3, 7, 0, 2, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

The asymptotic mean of the infinitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A049417(k)/k = 1.461436... is twice this constant. - Amiram Eldar, Jun 13 2020

Examples

			0.730718242127384225838975468173530161957256433861727...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A013661 (corresponding constant for all divisors), A275480 (exponential), A306633 (unitary), A307160 (bi-unitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Sum[Log[1 + x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{k->oo} A327566(k)/k^2.
Equals (1/2) * Product_{P} (1 + 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
Previous Showing 11-20 of 26 results. Next