A338914
Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0
The a(3) = 1 through a(10) = 11 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]
A339617
Number of non-graphical integer partitions of 2n.
Original entry on oeis.org
0, 1, 3, 6, 13, 25, 46, 81, 141, 234, 383, 615, 968, 1503, 2298, 3468, 5176, 7653, 11178, 16212, 23290, 33218, 46996, 66091, 92277, 128122, 176787, 242674, 331338, 450279, 608832, 819748, 1098907, 1467122, 1951020, 2584796, 3411998
Offset: 0
The a(1) = 1 through a(4) = 13 partitions:
(2) (4) (6) (8)
(2,2) (3,3) (4,4)
(3,1) (4,2) (5,3)
(5,1) (6,2)
(3,2,1) (7,1)
(4,1,1) (3,3,2)
(4,2,2)
(4,3,1)
(5,2,1)
(6,1,1)
(3,3,1,1)
(4,2,1,1)
(5,1,1,1)
For example, the partition (2,2,2,2) is not counted under a(4) because there are three possible graphs with the prescribed degrees:
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
-
A339617 [this sequence] counts non-graphical partitions of 2n (
A339618).
The following count partitions of even length and give their Heinz numbers:
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]=={}&]],{n,0,5}]
A339618
Heinz numbers of non-graphical integer partitions of even numbers.
Original entry on oeis.org
3, 7, 9, 10, 13, 19, 21, 22, 25, 28, 29, 30, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 75, 76, 79, 82, 84, 85, 87, 88, 89, 91, 94, 100, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 147
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 43: {14} 79: {22}
7: {4} 46: {1,9} 82: {1,13}
9: {2,2} 49: {4,4} 84: {1,1,2,4}
10: {1,3} 52: {1,1,6} 85: {3,7}
13: {6} 53: {16} 87: {2,10}
19: {8} 55: {3,5} 88: {1,1,1,5}
21: {2,4} 57: {2,8} 89: {24}
22: {1,5} 61: {18} 91: {4,6}
25: {3,3} 62: {1,11} 94: {1,15}
28: {1,1,4} 63: {2,2,4} 100: {1,1,3,3}
29: {10} 66: {1,2,5} 101: {26}
30: {1,2,3} 70: {1,3,4} 102: {1,2,7}
34: {1,7} 71: {20} 107: {28}
37: {12} 75: {2,3,3} 111: {2,12}
39: {2,6} 76: {1,1,8} 113: {30}
For example, there are three possible multigraphs with degrees (1,1,3,3):
{{1,2},{1,2},{1,2},{3,4}}
{{1,2},{1,2},{1,3},{2,4}}
{{1,2},{1,2},{1,4},{2,3}}.
Since none of these is a graph, the Heinz number 100 belongs to the sequence.
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
-
A339617 counts non-graphical partitions of 2n (
A339618 [this sequence]).
The following count partitions of even length and give their Heinz numbers:
-
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],EvenQ[Length[nrmptn[#]]]&&strs[Times@@Prime/@nrmptn[#]]=={}&]
A112141
Product of the first n semiprimes.
Original entry on oeis.org
4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1
a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime signatures begins:
4: (2)
24: (3,1)
216: (3,3)
2160: (4,3,1)
30240: (5,3,1,1)
453600: (5,4,2,1)
9525600: (5,5,2,2)
209563200: (6,5,2,2,1)
5239080000: (6,5,4,2,1)
136216080000: (7,5,4,2,1,1)
4495130640000: (7,6,4,2,2,1)
152834441760000: (8,6,4,2,2,1,1)
5349205461600000: (8,6,5,3,2,1,1)
203269807540800000: (9,6,5,3,2,1,1,1)
7927522494091200000: (9,7,5,3,2,2,1,1)
364666034728195200000: (10,7,5,3,2,2,1,1,1)
17868635701681564800000: (10,7,5,5,2,2,1,1,1)
(End)
Partial sums of semiprimes are
A062198.
First differences of semiprimes are
A065516.
A000142 lists factorials, with partial products
A000178 (superfactorials).
A001358 lists semiprimes, with partial products
A112141 (this sequence).
A320655 counts factorizations into semiprimes.
-
A112141 := proc(n)
mul(A001358(i),i=1..n) ;
end proc:
seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
-
NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *)
FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
-
a(n)=my(v=vector(n),i,k=3);while(iCharles R Greathouse IV, Apr 04 2013
-
from sympy import factorint
def aupton(terms):
alst, k, p = [], 1, 1
while len(alst) < terms:
if sum(factorint(k).values()) == 2:
p *= k
alst.append(p)
k += 1
return alst
print(aupton(18)) # Michael S. Branicky, Aug 31 2021
A338901
Position of the first appearance of prime(n) as a factor in the list of squarefree semiprimes.
Original entry on oeis.org
1, 1, 2, 3, 6, 7, 9, 11, 13, 17, 18, 21, 23, 25, 29, 31, 34, 36, 40, 42, 45, 47, 50, 52, 56, 58, 61, 64, 67, 70, 76, 78, 81, 82, 86, 89, 93, 97, 100, 104, 106, 107, 112, 113, 116, 118, 125, 129, 133, 134, 135, 139, 141, 147, 150, 154, 159, 160, 165, 167, 169
Offset: 1
A004526 counts 2-part partitions, with strict case
A140106 (shifted left).
A115392 is the not necessarily squarefree version.
A166237 gives the first differences of squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338899 gives prime indices of squarefree semiprimes, differences
A338900.
Cf.
A001221,
A001222,
A002100,
A056239,
A065516,
A112798,
A167171,
A320891,
A320911,
A338903,
A338905.
-
rs=First/@FactorInteger[#]&/@Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&];
Table[Position[rs,i][[1,1]],{i,Union@@rs}]
A339113
Products of primes of squarefree semiprime index (A322551).
Original entry on oeis.org
1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1
The sequence of terms together with the corresponding multigraphs begins:
1: {} 233: {{2,7}} 487: {{2,11}}
13: {{1,2}} 257: {{3,5}} 491: {{1,15}}
29: {{1,3}} 269: {{2,8}} 499: {{3,8}}
43: {{1,4}} 271: {{1,10}} 559: {{1,2},{1,4}}
47: {{2,3}} 293: {{1,11}} 577: {{1,16}}
73: {{2,4}} 313: {{3,6}} 607: {{2,12}}
79: {{1,5}} 347: {{2,9}} 611: {{1,2},{2,3}}
101: {{1,6}} 373: {{1,12}} 631: {{3,9}}
137: {{2,5}} 377: {{1,2},{1,3}} 647: {{1,17}}
139: {{1,7}} 389: {{4,5}} 653: {{4,7}}
149: {{3,4}} 421: {{1,13}} 673: {{1,18}}
163: {{1,8}} 439: {{3,7}} 677: {{2,13}}
167: {{2,6}} 443: {{1,14}} 727: {{2,14}}
169: {{1,2},{1,2}} 449: {{2,10}} 751: {{4,8}}
199: {{1,9}} 467: {{4,6}} 757: {{1,19}}
These primes (of squarefree semiprime index) are listed by
A322551.
The strict (squarefree) case is
A309356.
The prime instead of squarefree semiprime version:
The nonprime instead of squarefree semiprime version:
The semiprime instead of squarefree semiprime version:
A002100 counts partitions into squarefree semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A339561 lists products of distinct squarefree semiprimes (ranking:
A339560).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]
A339559
Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 14, 23, 27, 41, 47, 70, 84, 114, 141, 190, 225, 303, 370, 475, 578, 738, 890, 1131, 1368, 1698, 2058, 2549, 3048, 3759, 4505, 5495, 6574, 7966, 9483, 11450, 13606, 16307, 19351, 23116, 27297, 32470, 38293, 45346, 53342, 62939
Offset: 0
The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot):
11 . 22 2111 33 2221 44 3222 55
1111 2211 4111 2222 6111 3322
3111 211111 3311 222111 3331
111111 5111 321111 4222
221111 411111 4411
311111 21111111 7111
11111111 222211
322111
331111
421111
511111
22111111
31111111
1111111111
For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways:
{{1,2},{1,2},{1,3},{1,4},{3,4}}
{{1,2},{1,3},{1,3},{1,4},{2,4}}
{{1,2},{1,3},{1,4},{1,4},{2,3}}
None of these are strict, so y is counted under a(22).
A320894 ranks these partitions (using Heinz numbers).
A339560 counts the complement in even-length partitions.
A339564 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
Cf.
A001055,
A001221,
A005117,
A007717,
A025065,
A030229,
A089259,
A292432,
A320893,
A338899,
A338903,
A339619.
-
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}]
A339114
Least semiprime whose prime indices sum to n.
Original entry on oeis.org
4, 6, 9, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 2
The sequence of terms together with their prime indices begins:
4: {1,1} 106: {1,16} 254: {1,31}
6: {1,2} 118: {1,17} 262: {1,32}
9: {2,2} 122: {1,18} 274: {1,33}
14: {1,4} 134: {1,19} 278: {1,34}
21: {2,4} 142: {1,20} 298: {1,35}
26: {1,6} 146: {1,21} 302: {1,36}
34: {1,7} 158: {1,22} 314: {1,37}
38: {1,8} 166: {1,23} 326: {1,38}
46: {1,9} 178: {1,24} 334: {1,39}
58: {1,10} 194: {1,25} 346: {1,40}
62: {1,11} 202: {1,26} 358: {1,41}
74: {1,12} 206: {1,27} 362: {1,42}
82: {1,13} 214: {1,28} 382: {1,43}
86: {1,14} 218: {1,29} 386: {1,44}
94: {1,15} 226: {1,30} 394: {1,45}
A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
-
Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* Harvey P. Dale, Sep 06 2022 *)
-
a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020
A339116
Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.
Original entry on oeis.org
6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2
Triangle begins:
6
10 15
14 21 35
22 33 55 77
26 39 65 91 143
34 51 85 119 187 221
38 57 95 133 209 247 323
46 69 115 161 253 299 391 437
58 87 145 203 319 377 493 551 667
62 93 155 217 341 403 527 589 713 899
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums
A339360.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
-
row(n) = {prime(n)*primes(n-1)}
{ for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
A025129
a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n-k+1), where k = [ n/2 ], p = A000040, the primes.
Original entry on oeis.org
0, 6, 10, 29, 43, 94, 128, 231, 279, 484, 584, 903, 1051, 1552, 1796, 2489, 2823, 3784, 4172, 5515, 6091, 7758, 8404, 10575, 11395, 14076, 15174, 18339, 19667, 23414, 24906, 29437, 31089, 36500, 38614, 44731, 47071, 54198, 56914, 65051, 68371, 77402, 81052, 91341
Offset: 1
From _Gus Wiseman_, Dec 05 2020: (Start)
The sequence of sums begins (n > 1):
6 = 6
10 = 10
29 = 14 + 15
43 = 22 + 21
94 = 26 + 33 + 35
128 = 34 + 39 + 55
231 = 38 + 51 + 65 + 77
279 = 46 + 57 + 85 + 91
(End)
The nonsquarefree version is
A024697 (shifted right).
Row sums of
A338905 (shifted right).
A332765 is the greatest among these squarefree semiprimes.
A006881 lists squarefree semiprimes.
A014342 is the self-convolution of the primes.
A056239 is the sum of prime indices of n.
A339194 sums squarefree semiprimes grouped by greater prime factor.
Cf.
A001221,
A005117,
A062198,
A098350,
A168472,
A320656,
A338900,
A338901,
A338904,
A339114,
A339116.
-
a025129 n = a025129_list !! (n-1)
a025129_list= f (tail a000040_list) [head a000040_list] 1 where
f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
f ps (p : qs) (k + 1)
-- Reinhard Zumkeller, Apr 07 2014
-
f[n_] := Block[{primeList = Prime@ Range@ n}, Total[ Take[ primeList, Floor[n/2]]*Reverse@ Take[ primeList, {Floor[(n + 3)/2], n}]]]; Array[f, 44] (* Robert G. Wilson v, Apr 07 2014 *)
-
A025129=n->sum(k=1,n\2,prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
Comments