cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 438 results. Next

A032200 Number of rooted compound windmills (mobiles) of n nodes.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 51, 128, 345, 940, 2632, 7450, 21434, 62174, 182146, 537369, 1596133, 4767379, 14312919, 43162856, 130695821, 397184252, 1211057426, 3703794849, 11358759346, 34923477315, 107627138308, 332404636811
Offset: 1

Views

Author

Keywords

Comments

Also the number of locally necklace plane trees with n nodes, where a plane tree is locally necklace if the sequence of branches directly under any given node is lexicographically minimal among its cyclic permutations. - Gus Wiseman, Sep 05 2018

Examples

			From _Gus Wiseman_, Sep 05 2018: (Start)
The a(5) = 9 locally necklace plane trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  (o((o)))
  ((o)(o))
  ((ooo))
  (o(oo))
  (oo(o))
  (oooo)
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84).

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    neckplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[neckplane/@c],neckQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[neckplane[n]],{n,10}] (* Gus Wiseman, Sep 05 2018 *)
  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=O(1));for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018

Formula

Shifts left under "CIK" (necklace, indistinct, unlabeled) transform.

A032347 Inverse binomial transform of A032346.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 82, 354, 1671, 8536, 46814, 273907, 1700828, 11158746, 77057021, 558234902, 4230337018, 33448622893, 275322101318, 2354401779494, 20878592918183, 191682453823420, 1819147694792802
Offset: 0

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := a[n] = 1 + Sum[Binomial[n-1, j]*a[j], {j, 2, n-1}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 08 2013, after Jon Perry *)
    nmax = 20; Assuming[x > 0, CoefficientList[Series[E^(E^x) * (1/E + ExpIntegralEi[-1] - ExpIntegralEi[-E^x]), {x, 0, nmax}], x] ] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 10 2020 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1 - x * (1 - subst(A, x, x/(1-x)) / (1 - x))); polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Jul 10 2020

Formula

E.g.f. satisfies A' = exp(x) A - 1.
Recurrence: a(1)=0, a(2)=1, for n > 2, a(n) = 1 + Sum_{j=2..n-1} binomial(n-1, j)*a(j). - Jon Perry, Apr 26 2005
G.f. A(x) satisfies: A(x) = 1 - x * (1 - A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, Jul 10 2020

A035357 Number of increasing asymmetric rooted polygonal cacti with bridges (mixed Husimi trees).

Original entry on oeis.org

1, 1, 1, 7, 39, 409, 4687, 62822, 945250, 15999616, 300150210, 6198330586, 139779046596, 3420083177362, 90241503643208, 2554721759776914, 77240614583288344, 2484170781778551036
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Formula

Shifts left under transform T where Ta = EGJ(BHJ(a)).

A038037 Number of labeled rooted compound windmills (mobiles) with n nodes.

Original entry on oeis.org

1, 2, 9, 68, 730, 10164, 173838, 3524688, 82627200, 2198295360, 65431163160, 2154106470240, 77714083773456, 3048821300491680, 129221979665461200, 5884296038166954240, 286492923374605966080, 14851359950834255500800
Offset: 1

Views

Author

Christian G. Bower, Sep 15 1998

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.83).

Crossrefs

Programs

  • Maple
    logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: b:= logtr(-a): a:= n-> `if`(n<=1,1, -n*b(n-1)): seq(a(n), n=1..25); # Alois P. Heinz, Sep 14 2008
  • Mathematica
    a[n_] = Sum[Binomial[n, j]*Abs[StirlingS1[n-1, j]]*j!, {j, 0, n}]; Array[a, 18]
    (* Jean-François Alcover, Jun 22 2011, after Vladimir Kruchinin *)
  • PARI
    Vec(serlaplace(serreverse(x/(1 - log(1-x + O(x^20)))))) \\ Andrew Howroyd, Sep 19 2018

Formula

Divides by n and shifts left under "CIJ" (necklace, indistinct, labeled) transform.
E.g.f. A(x) satisfies A(x) = x-x*log(1-A(x)). [Corrected by Andrey Zabolotskiy, Sep 16 2022]
a(n) = Sum_{j=0..n} binomial(n,j)*abs(Stirling1(n-1,j))*j!, n > 0. - Vladimir Kruchinin, Feb 03 2011
a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^(n-1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
E.g.f.: series reversion of x/(1 - log(1-x)). - Andrew Howroyd, Sep 19 2018

A038046 Shifts left under transform T where Ta is (identity) DCONV a.

Original entry on oeis.org

1, 1, 3, 6, 12, 17, 32, 39, 63, 81, 120, 131, 213, 226, 311, 377, 503, 520, 742, 761, 1031, 1169, 1442, 1465, 2008, 2093, 2558, 2801, 3465, 3494, 4591, 4622, 5628, 6054, 7111, 7390, 9321, 9358, 10899, 11616, 13873, 13914, 17070, 17113, 20063, 21509, 24462
Offset: 1

Views

Author

Keywords

Comments

Eigensequence of triangle A126988. (i.e. the sequence shifts upon multiplication from the left by triangle A126988). - Gary W. Adamson, Apr 27 2009
Number of planted achiral trees with a distinguished leaf. - Gus Wiseman, Jul 31 2018

Examples

			From _Gus Wiseman_, Jul 31 2018: (Start)
The a(5) = 12 planted achiral trees with a distinguished leaf:
  (Oooo), (oOoo), (ooOo), (oooO),
  ((O)(o)), ((o)(O)),
  ((Ooo)), ((oOo)), ((ooO)),
  (((Oo))), (((oO))),
  ((((O)))).
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n, (m-> m*
          add(a(d)/d, d=numtheory[divisors](m)))(n-1))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, May 09 2019
  • Mathematica
    a[n_]:=If[n==1,1,Sum[d*a[(n-1)/d],{d,Divisors[n-1]}]];
    Array[a,30] (* Gus Wiseman, Jul 31 2018 *)

Formula

a(1) = 1; a(n > 1) = Sum_{d|(n-1)} d * a((n-1)/d). - Gus Wiseman, Jul 31 2018
G.f. A(x) satisfies: A(x) = x * (1 + Sum_{j>=1} j*A(x^j)). - Ilya Gutkovskiy, May 09 2019

A051163 Sequence is defined by property that (a0,a1,a2,a3,...) = binomial transform of (a0,a0,a1,a1,a2,a2,a3,a3,...).

Original entry on oeis.org

1, 2, 5, 12, 30, 76, 194, 496, 1269, 3250, 8337, 21428, 55184, 142376, 367916, 952000, 2466014, 6393372, 16586678, 43054344, 111801908, 290412296, 754543052, 1960808160, 5096293794, 13247503540, 34440553562, 89549255592, 232868582328, 605646682144
Offset: 0

Views

Author

Keywords

Comments

Equals the self-convolution of A027826. Also equals antidiagonal sums of symmetric square array A100936. - Paul D. Hanna, Nov 22 2004
Equals eigensequence of triangle A152198. - Gary W. Adamson, Nov 28 2008

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(`if`(k<2, 1,
          a(iquo(k, 2)))*binomial(n, k), k=0..n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 08 2015
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[k, j]*Binomial[n-k, j]*a[j], {k, 1, n}, {j, 0, n-k}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 11 2015 *)
  • PARI
    a(n)=1+sum(k=1,n,sum(j=0,n-k,binomial(k,j)*binomial(n-k,j)*a(j)))
    
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=subst(A,x,(x/(1-x))^2)/(1-x)); polcoeff(A^2,n))
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Nov 22 2004

Formula

a(n) = 1 + Sum_{k=1..n} Sum_{j=0..n-k} C(k, j)*C(n-k, j)*a(j). - Paul D. Hanna, Nov 22 2004
G.f. A(x) satisfies: A(x) = A(x^2/(1-x)^2)/(1-x)^2 and A(x^2) = A(x/(1+x))/(1+x)^2. - Paul D. Hanna, Nov 22 2004
a(0) = 1; a(n) = Sum_{k=0..floor(n/2)} binomial(n+1,2*k+1) * a(k). - Ilya Gutkovskiy, Apr 07 2022

Extensions

More terms from Vladeta Jovovic, Jul 26 2002

A054090 Triangular array generated by its row sums: T(n,0) = 1 for n >= 0, T(n,1) = r(n-1), T(n,k) = T(n,k-1) - (-1)^k * r(n-k) for k = 2, 3, ..., n, n >= 2, r(h) = sum of the numbers in row h of T.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 3, 1, 10, 6, 8, 7, 1, 32, 22, 26, 24, 25, 1, 130, 98, 108, 104, 106, 105, 1, 652, 522, 554, 544, 548, 546, 547, 1, 3914, 3262, 3392, 3360, 3370, 3366, 3368, 3367, 1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     2,     1;
  1,     4,     2,     3;
  1,    10,     6,     8,     7;
  1,    32,    22,    26,    24,    25;
  1,   130,    98,   108,   104,   106,   105;
  1,   652,   522,   554,   544,   548,   546,   547;
  1,  3914,  3262,  3392,  3360,  3370,  3366,  3368,  3367;
  1, 27400, 23486, 24138, 24008, 24040, 24030, 24034, 24032, 24033;
		

Crossrefs

Cf. A054091 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, Sum[T[n-1,j], {j,0,n-1}], T[n,k-1] - (-1)^k*Sum[T[n-k,j], {j,0,n-k}]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 23 2022 *)
  • PARI
    {T(n, k)= local(A); if(k<0||k>n, 0, if(k==0, 1, A=vector(n, i, (i>1)+1); for(i=2, n-1, A[i+1]=(i-1)*A[i]+2); sum(i=0, k-1, (-1)^i*A[n-i])))} /* Michael Somos, Nov 19 2006 */
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A054090
        if (k==0): return 1
        elif (k==1): return sum(T(n-1, j) for j in (0..n-1))
        else: return T(n, k-1) - (-1)^k*sum(T(n-k, j) for j in (0..n-k))
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 23 2022

Formula

T(n, k) = T(n, k-1) - (-1)^k * Sum_{j=0..n-k} T(n-k, j), with T(n, 0) = 1, and T(n, 1) = Sum_{j=0..n-1} T(n-1, j).
Sum_{k=0..n} T(n, k) = A054091(n).

A055349 Triangle of labeled mobiles (circular rooted trees) with n nodes and k leaves.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 8, 0, 120, 360, 220, 30, 0, 720, 3600, 4200, 1500, 144, 0, 5040, 37800, 71400, 47250, 11508, 840, 0, 40320, 423360, 1176000, 1234800, 545664, 98784, 5760, 0, 362880, 5080320, 19474560, 29635200, 20469456, 6618528, 940896, 45360, 0
Offset: 1

Views

Author

Christian G. Bower, May 15 2000

Keywords

Examples

			Triangle begins:
     1;
     2,     0;
     6,     3,     0;
    24,    36,     8,     0;
   120,   360,   220,    30,     0;
   720,  3600,  4200,  1500,   144,   0;
  5040, 37800, 71400, 47250, 11508, 840, 0;
  ...
		

Crossrefs

Row sums give A038037.

Programs

  • Mathematica
    T[rows_] := {{1}}~Join~((cc = CoefficientList[#, y]; Append[Rest[cc], 0] * Length[cc]!)& /@ (CoefficientList[InverseSeries[x/(y-Log[1-x + O[x]^rows] ), x], x][[3;;]]));
    T[9] // Flatten (* Jean-François Alcover, Oct 31 2019 *)
  • PARI
    A(n)={my(v=Vec(serlaplace(serreverse(x/(y - log(1-x + O(x^n))))))); vector(#v, i, Vecrev(v[i]/y, i))}
    { my(T=A(10)); for(i=1, #T, print(T[i])) } \\ Andrew Howroyd, Sep 23 2018

Formula

E.g.f. satisfies A(x, y) = x*y - x*log(1-A(x, y)). [Corrected by Sean A. Irvine, Mar 19 2022]

A144018 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where sequence a_k of column k has a_k(0)=0, followed by (k+1)-fold 1 and a_k(n) shifts k places left under Euler transform.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 3, 2, 1, 1, 20, 6, 3, 2, 1, 1, 48, 10, 5, 3, 2, 1, 1, 115, 20, 8, 5, 3, 2, 1, 1, 286, 36, 14, 7, 5, 3, 2, 1, 1, 719, 72, 23, 12, 7, 5, 3, 2, 1, 1, 1842, 137, 40, 18, 11, 7, 5, 3, 2, 1, 1, 4766, 275, 69, 30, 16, 11, 7, 5, 3, 2, 1, 1, 12486, 541, 121, 47, 25, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 07 2008

Keywords

Examples

			T(5,1) = ([1,2,4]*[1,1,4] + [1]*[1]*4 + [1,2]*[1,1]*2 + [1,3]*[1,2]*1)/4 = 36/4 = 9.
Triangle begins:
    1;
    1,  1;
    2,  1,  1;
    4,  2,  1,  1;
    9,  3,  2,  1, 1;
   20,  6,  3,  2, 1, 1;
   48, 10,  5,  3, 2, 1, 1;
  115, 20,  8,  5, 3, 2, 1, 1;
  286, 36, 14,  7, 5, 3, 2, 1, 1;
  719, 72, 23, 12, 7, 5, 3, 2, 1, 1;
		

Crossrefs

T(2n,n) gives A000041(n).
Cf. A316074.

Programs

  • Maple
    etrk:= proc(p) proc(n, k) option remember; `if`(n=0, 1,
             add(add(d*p(d, k), d=numtheory[divisors](j))*
             procname(n-j, k), j=1..n)/n)
           end end:
    B:= etrk(T):
    T:= (n, k)-> `if`(n<=k, `if`(n=0, 0, 1), B(n-k, k)):
    seq(seq(T(n, k), k=1..n), n=1..14);
  • Mathematica
    etrk[p_] := Module[{f}, f[n_, k_] := f[n, k] = If[n == 0, 1, (Sum[Sum[d*p[d, k], {d, Divisors[j]}]*f[n-j, k], {j, 1, n-1}] + Sum[d*p[d, k], {d, Divisors[n]}])/n]; f]; b = etrk[t]; t[n_, k_] := If[n <= k, If[n == 0, 0, 1], b[n-k, k]]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

A000998 From a differential equation.

Original entry on oeis.org

1, 3, 6, 11, 24, 69, 227, 753, 2451, 8004, 27138, 97806, 375313, 1511868, 6292884, 26826701, 116994453, 523646202, 2414394601, 11487130362, 56341183365, 284110648983, 1468690344087, 7766823788295, 41976012524088, 231812530642644, 1308325741771908
Offset: 0

Views

Author

Keywords

Comments

When preceded by {0, 0, 1, 0, 0}, this sequence shifts 3 places under binomial transform. - Olivier Gérard, Aug 12 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
          add(binomial(n-3, j)*b(j), j=0..n-3))
        end:
    a:= n-> b(n+5):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 21 2019
  • Mathematica
    b[n_] := b[n] = If[n<3, {0, 0, 1}[[n+1]], Sum[Binomial[n-3, j] b[j], {j, 0, n-3}]];
    a[n_] := b[n+5];
    a /@ Range[0, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)

Formula

G.f.: A(x) = Sum(x^(3*k-3)/Product(1-l*x,l = 0 .. k)^3,k = 0 .. infinity). - Vladeta Jovovic, Feb 05 2008

Extensions

More terms from Vladeta Jovovic, Feb 05 2008
Previous Showing 81-90 of 438 results. Next