cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 3244 results. Next

A141270 (0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, ...) transform in (0*1, 2*3, 2*2, 5*2, 3*7, 2*3, 3*2, 2*5, 11*2, 2*3, ...).

Original entry on oeis.org

0, 6, 4, 10, 21, 6, 6, 10, 22, 6, 26, 21, 10, 68, 6, 38, 4, 15, 14, 253, 6, 15, 4, 39, 6, 14, 58, 15, 62, 15, 22, 85, 14, 6, 74, 38, 39, 6, 205, 6, 301, 4, 33, 10, 46, 94, 12, 14, 10, 6, 34, 26, 106, 9, 55, 6, 21, 38, 1711, 4, 15, 122, 93, 14, 12, 65, 6, 737, 4, 51, 46, 35, 142, 9
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Times @@ # &, Partition[Flatten[{0}~Join~Array[DeleteCases[Flatten@ FactorInteger[#], 1] &, 72] /. {} -> {1}], 2, 2]] (* Michael De Vlieger, Oct 20 2021 *)

Extensions

A 65 replaced with 85, a 54 with 74, etc. by R. J. Mathar, Feb 21 2009

A153521 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + 11*T(n-2, k-1), read by rows.

Original entry on oeis.org

2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1353, 5276, 1353, 2, 2, 1377, 21248, 21248, 1377, 2, 2, 1401, 37508, 100532, 37508, 1401, 2, 2, 1425, 54056, 371768, 371768, 54056, 1425, 2, 2, 1449, 70892, 838412, 1849388, 838412, 70892, 1449, 2, 2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 28 2008

Keywords

Examples

			Triangle begins as:
   2;
  11,   11;
   2,  238,     2;
   2, 1329,  1329,       2;
   2, 1353,  5276,    1353,       2;
   2, 1377, 21248,   21248,    1377,       2;
   2, 1401, 37508,  100532,   37508,    1401,       2;
   2, 1425, 54056,  371768,  371768,   54056,    1425,     2;
   2, 1449, 70892,  838412, 1849388,  838412,   70892,  1449,    2;
   2, 1473, 88016, 1503920, 6777248, 6777248, 1503920, 88016, 1473, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), this sequence (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A151617 (row sums).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,0,1,5): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,0,1,5], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,0,1,5) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
    

Formula

T(n, k)= T(n-1, k) + T(n-1, k-1) + 11*T(n-2, k-1).
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (0,1,5).
Sum_{k=1..n} T(n,k,p,q,j) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for (p,q,j)=(0,1,5) = A151617(n).
Row sums satisfy the recurrence relation S(n) = 2*S(n-1) + prime(j)*S(n-2), for n > 4, with S(1) = 2, S(2) = 2*prime(j), S(3) = 2*prime(j)^2, S(4) = 2*prime(j)^3 for j=5. (End)

Extensions

Edited by G. C. Greubel, Mar 04 2021

A171386 The characteristic function of 2 and 3: 1 if n is prime such that either n-1 or n+1 is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + a(n) = A052268(n).

Crossrefs

Programs

Formula

a(n) = A130130(n) - A130130(n-1), for n>0.

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A172332 Floor(n*(sqrt(13)+sqrt(5))).

Original entry on oeis.org

0, 5, 11, 17, 23, 29, 35, 40, 46, 52, 58, 64, 70, 75, 81, 87, 93, 99, 105, 110, 116, 122, 128, 134, 140, 146, 151, 157, 163, 169, 175, 181, 186, 192, 198, 204, 210, 216, 221, 227, 233, 239, 245, 251, 257, 262, 268, 274, 280, 286, 292
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*5.8416192529..., where the constant is the largest root of x^4 -36*x^2 +64.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(13)+Sqrt(5))): n in [0..60]];
  • Mathematica
    With[{c = Sqrt[13] + Sqrt[5]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)

A172334 Floor(n*(sqrt(13)+sqrt(3))).

Original entry on oeis.org

0, 5, 10, 16, 21, 26, 32, 37, 42, 48, 53, 58, 64, 69, 74, 80, 85, 90, 96, 101, 106, 112, 117, 122, 128, 133, 138, 144, 149, 154, 160, 165, 170, 176, 181, 186, 192, 197, 202, 208, 213, 218, 224, 229, 234, 240, 245, 250, 256, 261, 266
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

Also integer part of n*5.3376020830..., where the constant is the largest root of x^4 -32*x^2 +100.

Crossrefs

Programs

  • Magma
    [ Floor(n*(Sqrt(13)+Sqrt(3))): n in [0..60] ];
  • Mathematica
    With[{c = Sqrt[13] + Sqrt[3]}, Table[Floor[c n], {n, 0, 50}]] (* Harvey P. Dale, Apr 25 2011 *)

A172336 a(n) = floor(n*(sqrt(13)+sqrt(2))).

Original entry on oeis.org

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 256, 261, 266, 271, 276
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

a(n) = integer part of n*(sqrt(13)+sqrt(2)), where the constant is the largest root of x^4 -30*x^2 +121.

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(13)+Sqrt(2))): n in [0..60]];
    
  • Mathematica
    With[{c = Sqrt[13] + Sqrt[2]}, Floor[c Range[0, 70]]] (* Vincenzo Librandi, Aug 01 2013 *)
  • PARI
    for(n=0,50, print1(floor(n*(sqrt(13)+sqrt(2))), ", ")) \\ G. C. Greubel, Jul 05 2017

A172338 a(n) = floor(n*(sqrt(5)+sqrt(3))).

Original entry on oeis.org

0, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218
Offset: 0

Views

Author

Vincenzo Librandi, Feb 01 2010

Keywords

Comments

sqrt(5)+sqrt(3) = 3.96811878506867... is the largest root of x^4 - 16*x^2 + 4.

Crossrefs

Programs

  • Magma
    [Floor(n*Sqrt(5)+Sqrt(3)): n in [0..60] ];
    
  • Mathematica
    With[{c = Sqrt[5] + Sqrt[3]}, Floor[c Range[0,60]]] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=sqrtint(sqrtint(60*n^4)+8*n^2) \\ Charles R Greathouse IV, Jan 24 2022

A131713 Period 3: repeat [1, -2, 1].

Original entry on oeis.org

1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Comments

Second differences of A131534. Binomial transform of 1, -3, 6, -9, 9, 0, ..., A057083 signed.
Nonsimple continued fraction expansion of sqrt(2)-1 = 0.414213562... - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

  • Magma
    &cat [[1, -2, 1]^^30]; // Wesley Ivan Hurt, Jul 01 2016
  • Maple
    seq(op([1, -2, 1]), n=0..50); # Wesley Ivan Hurt, Jul 01 2016
  • Mathematica
    f[n_] := If[ Mod[n, 3] == 1, -2, 1]; Array[f, 105, 0]
    CoefficientList[Series[(1 - x)/(1 + x + x^2), {x, 0, 104}], x]
    PadRight[{}, 120, {1,-2,1}] (* Harvey P. Dale, Jan 25 2014 *)
  • PARI
    a(n)=[1,-2,1][1+n%3] \\ Jaume Oliver Lafont, Mar 24 2009
    
  • PARI
    a(n)=1-3*(n%3==1) \\ Jaume Oliver Lafont, Mar 24 2009
    

Formula

a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^n) = 0^n, b(3^n) = 3 * 0^n - 2, b(p^n) = 1 if p > 3. - Michael Somos, Jan 02 2011
G.f.: (1-x)/(x^2+x+1). - R. J. Mathar, Nov 14 2007
a(n) = 2*cos((2n+1)*Pi/3). - Jaume Oliver Lafont, Nov 23 2008
a(n) = A117188(2*n). - R. J. Mathar, Jun 13 2011
a(n) + a(n-1) + a(n-2) = 0 for n>1, a(n) = a(n-3) for n>2. - Wesley Ivan Hurt, Jul 01 2016
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*(-3)^k. - Peter Bala, Feb 06 2019
E.g.f.: 2*exp(-x/2)*cos(sqrt(3)*x/2 + Pi/3). - Fabian Pereyra, Oct 17 2024

Extensions

Corrected and extended by Michael Somos, Jan 02 2011

A152811 a(n) = 2*(n^2 + 2*n - 2).

Original entry on oeis.org

2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Positive numbers k such that 2*k + 12 is a square. [Comment simplified by Zak Seidov, Jan 14 2009]
Sequence gives positive x values of solutions (x,y) to the Diophantine equation 2*x^3 + 12*x^2 = y^2. Corresponding y values are 8*A154560. There are three other solutions: (0,0), (-4,8) and (-6,0).
From a(2) onwards, third subdiagonal of triangle defined in A144562.
Also, nonnegative numbers of the form (m+sqrt(-3))^2 + (m-sqrt(-3))^2. - Bruno Berselli, Mar 13 2015
a(n-1) is the maximum Zagreb index over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars, so the bound also applies to 2-trees. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024

Examples

			a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
		

Crossrefs

Cf. A028872 (n^2-3), A154560 ((n+3)^2*n/2+1), A144562 (triangle T(m,n) = 2m*n+m+n-1).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Magma
    [ 2*(n^2+2*n-2) : n in [1..47] ];
    
  • Mathematica
    Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    {m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}

Formula

G.f.: 2*x*(1 + 3*x - 2*x^2)/(1-x)^3. [corrected by Elmo R. Oliveira, Nov 17 2024]
a(n) = 2*A028872(n+1).
a(n) = a(n-1) + 4*n + 2 for n > 1, a(1)=2.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/3 - cot(sqrt(3)*Pi)*Pi/(4*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/12. (End)
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 3*x - 2) + 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Edited and extended by Klaus Brockhaus, Jan 12 2009

A153516 Triangle T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j) and (p,q,j) = (0,1,2), read by rows.

Original entry on oeis.org

2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 33, 92, 33, 2, 2, 41, 200, 200, 41, 2, 2, 49, 340, 676, 340, 49, 2, 2, 57, 512, 1616, 1616, 512, 57, 2, 2, 65, 716, 3148, 5260, 3148, 716, 65, 2, 2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 28 2008

Keywords

Examples

			Triangle begins as:
  2;
  3,  3;
  2, 14,   2;
  2, 25,  25,    2;
  2, 33,  92,   33,     2;
  2, 41, 200,  200,    41,     2;
  2, 49, 340,  676,   340,    49,    2;
  2, 57, 512, 1616,  1616,   512,   57,   2;
  2, 65, 716, 3148,  5260,  3148,  716,  65,  2;
  2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2;
		

Crossrefs

Sequences with variable (p,q,j): this sequence (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A000244.

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,0,1,2): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,0,1,2], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,0,1,2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
    

Formula

T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p, q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 - 4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 - 2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (0,1,2).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1) for (p,q,j) = (0,1,2) = 2*A000244(n-1).

Extensions

Edited by G. C. Greubel, Mar 03 2021
Previous Showing 51-60 of 3244 results. Next