cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: ",$n++; } # _Dana Jacobsen

",$n++; } # _Dana Jacobsen's wiki page.

",$n++; } # _Dana Jacobsen has authored 16 sequences. Here are the ten most recent ones:

A275879 Nonstandard Jacobi primes.

Original entry on oeis.org

13, 97, 193, 409, 769, 2593, 4729, 6481, 12289, 15361, 55681, 331777, 417793, 737281, 786433, 2752513, 6684673, 8650753, 36175873, 69206017, 75079681, 155344897, 270532609, 435486721, 824717353, 860301577, 1380974593, 1845657601, 3221225473, 3255828481, 3281584129, 8531146753
Offset: 1

Author

N. J. A. Sloane, Aug 17 2016

Keywords

Crossrefs

Cf. A275878.

Extensions

a(26)-a(32) from Vincenzo Librandi, Aug 18 2016

A275878 Standard Jacobi primes.

Original entry on oeis.org

7, 61, 331, 547, 1951, 2437, 3571, 4219, 7351, 8269, 9241, 10267, 13669, 23497, 25117, 55897, 60919, 74419, 89269, 92401, 102121, 112327, 115837, 126691, 145861, 170647, 202021, 231019, 241117, 246247, 251431, 267307, 283669, 329677, 347821, 360187, 372769
Offset: 1

Author

N. J. A. Sloane, Aug 17 2016

Keywords

Comments

From Peter Bala, Feb 20 2022: (Start)
Primes of the form (3*k + 2)^3 - (3*k + 1)^3 = 27*k^2 + 27*k + 7.
Equivalently, primes p such that 4*p = 27*x^2 + 1, where x is odd.
Primes p of the form 6*m + 1, where 8*m + 1 is an odd square.
A prime p is in this list iff binomial(2*(p-1)/3,(p-1)/3) == -1 (mod p). See Cosgrave and Dilcher, Theorem 5, Corollary 3. (End)
Subsequence of cuban primes (A002407). - Bernard Schott, Jul 28 2022

Crossrefs

Programs

Extensions

Terms a(21) and beyond from Dana Jacobsen, Aug 18 2016

A275450 Numbers n such that primorial(n) contains n as a string of digits.

Original entry on oeis.org

3, 9, 21, 27, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 103, 107
Offset: 1

Author

Ivan N. Ianakiev, Jul 28 2016

Keywords

Examples

			Primorial(3) equals 30, which contains 3, therefore 3 is in the sequence.
		

Crossrefs

Cf. A002110 (primorial numbers), A275451.

Programs

  • Maple
    count:= 0:
    P:= 2; p:= 2;
    for n from 2 while count < 1000 do
      p:= nextprime(p);
      P:= P*p;
      if StringTools:-Search(sprintf("%d",n),sprintf("%d",P))<>0 then
         count:= count+1;
         A[count]:= n;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Jul 29 2016
  • Mathematica
    primorial[n_]:=Product[Prime[i],{i,1,n}];
    Select[Range@500,StringContainsQ[ToString[primorial[#]],ToString[#]]&]
  • Perl
    use ntheory ":all"; my @a275450 = grep { index(pn_primorial($),$) >= 0 } 1 .. 1000; say "@a275450"; # Dana Jacobsen, Aug 09 2016

Formula

A275451(a(n)) > 0.

A275631 Primes p such that the product of the distinct prime factors of p^2-1 is less than p.

Original entry on oeis.org

3, 7, 17, 31, 97, 127, 251, 449, 487, 577, 1151, 1249, 1567, 1999, 2663, 4801, 4999, 7937, 8191, 12799, 13121, 13183, 15551, 31249, 31751, 32257, 33857, 35153, 39367, 65537, 79201, 81919, 85751, 115249, 117127, 124001, 126001, 131071
Offset: 1

Author

N. J. A. Sloane, Aug 07 2016, following a suggestion from J. M. Bergot

Keywords

Crossrefs

Programs

Extensions

Terms a(10) and beyond from Dana Jacobsen, Aug 09 2016

A275629 The least odd prime leaving a prime remainder when divided by each of the first n odd primes.

Original entry on oeis.org

5, 17, 17, 47, 863, 863, 887, 887, 887, 887, 133877, 858707, 886013, 11891003, 11891003, 324840323, 1364103977, 7151489963, 7151489963, 10402068437, 10402068437, 875858298023, 7859437730303, 7859437730303, 10784807012723, 304858842631367, 1939577853386297, 4237718864973557
Offset: 1

Author

N. J. A. Sloane, Aug 07 2016

Keywords

Examples

			47 mod 3,5,7,11 is 2,2,5,3, which are all primes.
		

Extensions

Corrected and extended by Dana Jacobsen, Aug 09 2016
a(22) onwards from Bert Dobbelaere, Sep 13 2019

A072456 Annihilating primes for A000522.

Original entry on oeis.org

3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, 151, 157, 191, 199, 229, 233, 241, 263, 269, 277, 283, 311, 317, 337, 347, 359, 367, 379, 397, 433, 449, 467, 487, 503, 521, 541, 563, 569, 571, 577, 593, 607, 613, 619, 647, 659, 673, 683, 691, 727, 743, 769, 773, 809, 823, 827, 911, 919, 929, 953, 971, 991
Offset: 1

Author

N. J. A. Sloane, Aug 02 2002

Keywords

Comments

Primes p such that A072453(p) = 0.

Crossrefs

Programs

  • Perl
    use warnings;
      use strict;
      use ntheory ":all";
      use Math::GMPz;
      use Memoize;  memoize 'a000522';
      sub a000522 {
        my($n, $sum, $fn) = (shift, 0, Math::GMPz->new(1));
        do {  $sum += $fn;  $fn *= ($n-$_);  } for 0 .. $n;
        $sum;
      }
      sub a072453 {
        my $n = shift;
        vecsum( map { a000522($_) % $n == 0 } 0 .. $n-1 );
      }
      forprimes { print "$\n" unless a072453($) } 1000;
    # Dana Jacobsen, Feb 16 2016

Extensions

More terms from Vladeta Jovovic, Aug 02 2002
Offset corrected by Amiram Eldar, May 15 2020

A076847 Ramanujan function tau(p) as p runs through the primes.

Original entry on oeis.org

-24, 252, 4830, -16744, 534612, -577738, -6905934, 10661420, 18643272, 128406630, -52843168, -182213314, 308120442, -17125708, 2687348496, -1596055698, -5189203740, 6956478662, -15481826884, 9791485272, 1463791322, 38116845680, -29335099668, -24992917110
Offset: 1

Author

N. J. A. Sloane, Nov 23 2002

Keywords

Comments

From Wolfdieter Lang, May 15 2016: (Start)
This sequence determines all values of Ramanujan's tau function A000594 due to alpha-multiplicativity with alpha(x) = x^11 (the weight of the modular cusp form eta^{24}(z) with the Dedekind eta function is k = 12). See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 114, eq. (3) for the tau function. This implies multiplicativity of tau with tau(prime(n)^k) = sqrt(prime(n)^11)^k*S(k, a(n) / sqrt(prime(n)^11)), with the Chebyshev S polynomials (A049310), for n >= 1 and k >= 2. See the Apostol Exercise 6 on p. 139.
Note that the product representation of the Dirichlet series Sum_{n >=1} tau(n)/Sum_{n >= 1} tau(n)/n^s = Prod_{n >= 1} 1/(1 - a(n)/prime(n)^s + prime(n)^(11) / prime(n)^(2*s)) (see the Mordell reference, eq. (2)) leads also to this formula for tau(p^k) for primes p after expanding the factors of the product and collecting powers of 1/p^(k*s). If one insists on convergence of the product one can use s >= 7, if one uses Ramanujan's 1916 conjecture (proved by P. Deligne 1974) |tau(p)| <= 2*p^(11/2), i.e., |a(n)| <= 2*sqrt(prime(n)^11).
(End)

Examples

			84480 = A000594(2^3) = sqrt(2^(11))^3*S(3, -24/sqrt(2^(11))) = (-24)*((-24)^2 -2*2^11) = 84480. - _Wolfdieter Lang_, May 15 2016
		

References

  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 114, 138-139.

Crossrefs

Cf. A000594, A049310, A278577 (prime powers).

Programs

  • Mathematica
    RamanujanTau[Prime[Range[30]]] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    taup(p)=(65*sigma(p,11)+691*sigma(p,5)-691*252*sum(k=1,p-1,sigma(k,5)*sigma(p-k,5)))/756
    a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 22 2013
    
  • PARI
    H(n)=sumdiv(core(n,1)[2],d,my(D=-n/d^2);if(D%4<2,qfbclassno(D)/max(1,D+6)))
    taup(p)=my(x='x,P=x^5-9*p*x^4+28*p^2*x^3-35*p^3*x^2+15*p^4*x-p^5);p^5*H(4*p)/2-1-sum(t=1,sqrtint(4*p),subst(P,x,t^2)*H(4*p-t^2))
    a(n)=taup(prime(n)) \\ Charles R Greathouse IV, Apr 25 2013
    
  • Perl
    use ntheory ":all"; forprimes { say ramanujan_tau($) } 100 # _Dana Jacobsen, Sep 05 2015
    
  • Python
    from sympy import prime, divisor_sigma
    def A076847(n): return -24 if n == 1 else (q:=(p:=prime(n))**4)*(p+1)-24*(sum((i*(i*(i*(70*i - 140*p) + 90*p**2) - 20*p**3) + q)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1,p+1>>1))) # Chai Wah Wu, Nov 09 2022
  • Sage
    [p for (n,p) in enumerate(list(delta_qexp(100))) if is_prime(n)] # Peter Luschny, May 16 2016
    

Formula

a(n)*a(m) = A000594(prime(n)*prime(m)) for n != m (from the tau multiplicativity). - Wolfdieter Lang, May 15 2016
a(n)^2 = A000594(prime(n)^2) + prime(n)^11 (from alpha-multiplicativity). - Wolfdieter Lang, May 15 2016

A034778 Dirichlet convolution of Ramanujan numbers (A000594) with themselves.

Original entry on oeis.org

1, -48, 504, -2368, 9660, -24192, -33488, 239616, -163782, -463680, 1069224, -1193472, -1155476, 1607424, 4868640, 86016, -13811868, 7861536, 21322840, -22874880, -16877952, -51322752, 37286544, 120766464, -27669550, 55462848, -203834232
Offset: 1

Keywords

Comments

Multiplicative because A000594 is. - Christian G. Bower, May 16 2005

Examples

			G.f. = x - 48*x^2 + 504*x^3 - 2368*x^4 + 9660*x^5 - 24192*x^6 - 33488*x^7 + ...
		

Crossrefs

Cf. A000594.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, RamanujanTau[#]*RamanujanTau[n/#]&]; Array[a, 30] (* Jean-François Alcover, Nov 14 2015 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = Vec( eta(x + x^n*O(x))^24); sumdiv(n, d, A[d] * A[n/d]))}; /* Michael Somos, Jul 16 2004 */
    
  • Perl
    use ntheory ":all"; for my $n (1..50) { say divisor_sum($n, sub { my $d=shift; ramanujan_tau($d)*ramanujan_tau($n/$d) } # Dana Jacobsen, Sep 05 2015

Formula

a(n) = Sum_{d|n} tau(d)tau(n/d) where tau(n) = A000594(n) is Ramanujan's tau function.

A033181 Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.

Original entry on oeis.org

1729, 2465, 15841, 41041, 46657, 75361, 162401, 172081, 399001, 449065, 488881, 530881, 656601, 670033, 838201, 997633, 1050985, 1615681, 1773289, 1857241, 2113921, 2433601, 2455921, 2704801, 3057601, 3224065, 3581761, 3664585, 3828001, 4463641, 4903921
Offset: 1

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

These numbers n have the property that, for each prime divisor p, p-1 divides (n-1)/2. E.g., 2465 = 5*17*29; 1232/4 = 308; 1232/16 = 77; 1232/28 = 44. - Karsten Meyer, Nov 08 2005
All these numbers are Carmichael numbers (A002997). - Daniel Lignon, Sep 12 2015
These are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. Note: the absolute Euler-Jacobi pseudoprimes do not exist. Theorem: if an absolute Euler pseudoprime n is a Proth number, then b^((n-1)/2) == 1 for every b coprime to n; by Proth's theorem. Such numbers are 1729, 8355841, 40280065, 53282340865, ...; for example, 1729 = 27*2^6 + 1 with 27 < 2^6. However, it seems that all absolute Euler pseudoprimes n satisfy the stronger congruence b^((n-1)/2) == 1 (mod n) for every b coprime to n, as evidenced by the modified Korselt's criterion (see the first comment). It should be noted that these are odd numbers n such that Carmichael's lambda(n) divides (n-1)/2. Also, these are odd numbers n > 1 coprime to Sum_{k=1..n-1} k^{(n-1)/2}. - Amiram Eldar and Thomas Ordowski, Apr 29 2019
Carmichael numbers k such that (p-1)|(k-1)/2 for each prime p|k. These are odd composite numbers k with half (the maximal possible fraction) of the numbers 1 <= b < k coprime to k that are bases in which k is an Euler-Jacobi pseudoprime, i.e. A329726((k-1)/2)/phi(k) = 1/2. - Amiram Eldar, Nov 20 2019
By Karsten Meyer's and Amiram Eldar's comment, this sequence is numbers k > 1 such that 2*psi(k) | (k-1), where psi = A002322. This means that if k is a term in this sequence, then we actually have a^((k-1)/2) == 1 (mod k) for every a coprime to k. - Jianing Song, Sep 03 2024

Crossrefs

Programs

  • Maple
    filter:=  proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1)/2 mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(i,i=3..10^7,2)]); # Robert Israel, Nov 24 2015
  • Mathematica
    absEulerpspQ[n_Integer?PrimeQ]:=False;
    absEulerpspQ[n_Integer?EvenQ]:=False;
    absEulerpspQ[n_Integer?OddQ]:=Module[{a=2},
    While[aDaniel Lignon, Sep 09 2015 *)
    aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* Amiram Eldar, Nov 20 2019 *)
  • Perl
    use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($) && vecall { (($n-1)>>1) % ($-1) == 0 } factor($n=$); } 1e6; # _Dana Jacobsen, Dec 27 2015

Formula

a(n) == 1 (mod 4). - Thomas Ordowski, May 02 2019

Extensions

"Absolute Euler pseudoprimes" added to name by Daniel Lignon, Sep 09 2015
Definition edited by Thomas Ordowski, Apr 29 2019

A007811 Numbers k for which 10k+1, 10k+3, 10k+7 and 10k+9 are primes.

Original entry on oeis.org

1, 10, 19, 82, 148, 187, 208, 325, 346, 565, 943, 1300, 1564, 1573, 1606, 1804, 1891, 1942, 2101, 2227, 2530, 3172, 3484, 4378, 5134, 5533, 6298, 6721, 6949, 7222, 7726, 7969, 8104, 8272, 8881, 9784, 9913, 10111, 10984, 11653, 11929, 12220, 13546, 14416, 15727
Offset: 1

Author

N. J. A. Sloane and J. H. Conway, Mar 15 1996

Keywords

Programs

  • Haskell
    a007811 n = a007811_list !! (n-1)
    a007811_list = map (pred . head) $ filter (all (== 1) . map a010051') $
       iterate (zipWith (+) [10, 10, 10, 10]) [1, 3, 7, 9]
    -- Reinhard Zumkeller, Jul 18 2014
    
  • Magma
    [n: n in [0..10000] | forall{10*n+r: r in [1,3,7,9] | IsPrime(10*n+r)}]; // Bruno Berselli, Sep 04 2012
    
  • Maple
    for n from 1 to 10000 do m := 10*n: if isprime(m+1) and isprime(m+3) and isprime(m+7) and isprime(m+9) then print(n); fi: od: quit
  • Mathematica
    Select[ Range[ 1, 10000, 3 ], PrimeQ[ 10*#+1 ] && PrimeQ[ 10*#+3 ] && PrimeQ[ 10*#+7 ] && PrimeQ[ 10*#+9 ]& ]
    Select[Range[15000], And @@ PrimeQ /@ ({1, 3, 7, 9} + 10#) &] (* Ray Chandler, Jan 12 2007 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e5,if(s-p==8 && r-p==6 && q-p==2 && p%10==1, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Mar 21 2013
    
  • Perl
    use ntheory ":all"; my @s = map { ($-1)/10 } sieve_prime_cluster(10,1e9, 2,6,8); say for @s; # _Dana Jacobsen, May 04 2017

Formula

a(n) = 3*A014561(n) + 1. - Zak Seidov, Sep 21 2009