A000295 Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).
0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0
Examples
G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
References
- O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 17, 18.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Jean-Luc Baril and J. M. Pallo, The pruning-grafting lattice of binary trees, Theoretical Computer Science, 409, 2008, 382-393.
- Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 7.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Maximilien Gadouleau, James D. Mitchell, and Yann Peresse, Chains of subsemigroups, arXiv preprint arXiv:1501.06394 [math.GR], 2015. See Table 4.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
- Shelby Cox, Pratik Misra, and Pardis Semnani, Homaloidal Polynomials and Gaussian Models of Maximum Likelihood Degree One, arXiv:2402.06090 [math.AG], 2024.
- Benjamin Hellouin de Menibus and Yvan Le Borgne, Asymptotic behaviour of the one-dimensional "rock-paper-scissors" cyclic cellular automaton, arXiv:1903.12622 [math.PR], 2019.
- Karl Dilcher and Maciej Ulas, Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1) = 1, arXiv:1909.11222 [math.NT], 2019.
- Filippo Disanto, Some Statistics on the Hypercubes of Catalan Permutations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.2.
- J. M. Dusel, Balanced parabolic quotients and branching rules for Demazure crystals, J Algebr Comb (2016) 44: 363. DOI: 10.1007/s10801-016-0673-y.
- Pascal Floquet, Serge Domenech and Luc Pibouleau, Combinatorics of Sharp Separation System synthesis : Generating functions and Search Efficiency Criterion, Industrial Engineering and Chemistry Research, 33, pp. 440-443, 1994.
- Pascal Floquet, Serge Domenech, Luc Pibouleau and Said Aly, Some Complements in Combinatorics of Sharp Separation System Synthesis, American Institute of Chemical Engineering Journal, 39(6), pp. 975-978, 1993.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- R. K. Guy, Letter to N. J. A. Sloane.
- Ryota Inagaki, Tanya Khovanova, and Austin Luo, On Chip-Firing on Undirected Binary Trees, Ann. Comb. (2025). See pp. 24-25.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 388.
- Wayne A. Johnson, An Euler operator approach to Ehrhart series, arXiv:2303.16991 [math.CO], 2023.
- Lucas Kang, Investigation of Rule 73 as Case Study of Class 4 Long-Distance Cellular Automata, arXiv preprint arXiv:1310.3311 [nlin.CG], 2013.
- Oliver Kullmann and Xishun Zhao, Bounds for variables with few occurrences in conjunctive normal forms, arXiv preprint arXiv:1408.0629 [math.CO], 2014.
- César Eliud Lozada, Centroids of Pascal triangles
- Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
- Peter Charles Mendenhall and Hal M. Switkay, Consecutively Halved Positional Voting: A Special Case of Geometric Voting, Social Sciences vol. 12 no. 2 (2023), 47-59.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- J. W. Moon, A problem on arcs without bypasses in tournaments, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 71--75. MR0427129(55 #165).
- Agustín Moreno Cañadas, Hernán Giraldo, and Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, p 85-95, 2015.
- Emily Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- J. M. Pallo, Weak associativity and restricted rotation, Information Processing Letters, 109, 2009, 514-517.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- Markus Sigg, Collatz iteration and Euler numbers?
- Eric Weisstein's World of Mathematics, Chromatic Invariant
- Eric Weisstein's World of Mathematics, Prism Graph
- Wikipedia, Reed's Law
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Anssi Yli-Jyra, On Dependency Analysis via Contractions and Weighted FSTs, in Shall We Play the Festschrift Game?, Springer, 2012, pp. 133-158. - _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Programs
-
Haskell
a000295 n = 2^n - n - 1 -- Reinhard Zumkeller, Nov 25 2013
-
Magma
[2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
-
Magma
[EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
-
Maple
[ seq(2^n-n-1, n=1..50) ]; A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation # Grammar specification: spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]: struct := n -> combstruct[count](spec, size = n+1); seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
-
Mathematica
a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)]; Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *) LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *) Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
-
PARI
a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
-
SageMath
[2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024
Formula
a(n) = 2^n - n - 1.
G.f.: x^2/((1-2*x)*(1-x)^2).
E.g.f.: exp(x)*(exp(x)-1-x). - Emeric Deutsch, Oct 28 2006
a(0)=0, a(1)=0, a(n) = 3*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(0)=0, a(n) = 2*a(n-1) + n - 1 for all n in Z.
a(n) = Sum_{k=2..n} binomial(n, k). - Paul Barry, Jun 05 2003
a(n+1) = Sum_{i=1..n} Sum_{j=1..i} C(i, j). - Benoit Cloitre, Sep 07 2003
a(n+1) = 2^n*Sum_{k=0..n} k/2^k. - Benoit Cloitre, Oct 26 2003
a(0)=0, a(1)=0, a(n) = Sum_{i=0..n-1} i+a(i) for i > 1. - Gerald McGarvey, Jun 12 2004
a(n+1) = Sum_{k=0..n} (n-k)*2^k. - Paul Barry, Jul 29 2004
a(n) = Sum_{k=0..n} binomial(n, k+2); a(n+2) = Sum_{k=0..n} binomial(n+2, k+2). - Paul Barry, Aug 23 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k+1)*2^(n-k-2)*(-1/2)^k. - Paul Barry, Oct 25 2004
a(0) = 0; a(n) = Stirling2(n,2) + a(n-1) = A000225(n-1) + a(n-1). - Thomas Wieder, Feb 18 2007
a(n) = A000325(n) - 1. - Jonathan Vos Post, Aug 29 2008
a(0) = 0, a(n) = Sum_{k=0..n-1} 2^k - 1. - Doug Bell, Jan 19 2009
a(n) = A000225(n) - n. - Zerinvary Lajos, May 29 2009
a(n) = n*(2F1([1,1-n],[2],-1) - 1). - Olivier Gérard, Mar 29 2011
Column k=1 of A173018 starts a'(n) = 0, 1, 4, 11, ... and has the hypergeometric representation n*hypergeom([1, -n+1], [-n], 2). This can be seen as a formal argument to prefer Euler's A173018 over A008292. - Peter Luschny, Sep 19 2014
E.g.f.: exp(x)*(exp(x)-1-x); this is U(0) where U(k) = 1 - x/(2^k - 2^k/(x + 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(0) = 0; a(1) = 0; for n > 1: a(n) = Sum_{i=1..2^(n-1)-1} A001511(i). - David Siegers, Feb 26 2019
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n+1, 2*k+1). - Taras Goy, Jan 02 2025
Comments