A000337 a(n) = (n-1)*2^n + 1.
0, 1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, 20481, 45057, 98305, 212993, 458753, 983041, 2097153, 4456449, 9437185, 19922945, 41943041, 88080385, 184549377, 385875969, 805306369, 1677721601, 3489660929, 7247757313, 15032385537, 31138512897, 64424509441
Offset: 0
References
- F. Harary, Topological concepts in graph theory, pp. 13-17 of F. Harary and L. Beineke, editors, A seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967.
- V. G. Gutierrez and S. L. de Medrano, Surfaces as complete intersections, in Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces, edited by Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Contemp. Math. vol. 629, 2014, pp. 171-.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 119.
- G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers of G. H. Hardy, Vol. VII, p. 430.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000 (first 301 terms from T. D. Noe)
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 14.
- H. H. Bauschke and R. M. Corless, Analyzing a Projection Method with Maple, MapleTech Journal, 4:1 (1997), 2-7.
- L. W. Beineke and F. Harary, The genus of the n-cube, Canad. J. Math., 17 (1965), 494-496.
- Ulrich Brehm and Egon Schulte, Polyhedral Maps. [_Jonathan Vos Post_, Jul 25 2009]
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- Pedro Fernando Fernández Espinosa and Agustín Moreno Cañadas, Homological Ideals as Integer Specializations of Some Brauer Configuration Algebras, arXiv:2104.00050 [math.RT], 2021.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- Han Mao Kiah, Alexander Vardy, and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
- S. Kitaev, J. Remmel, and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 2015, #A16. (arXiv, arXiv:1302.2274 [math.CO], 2013)
- Santiago López de Medrano, On the genera of moment-angle manifolds associated to dual-neighborly polytopes, combinatorial formulas and sequences, arXiv:2003.07508 [math.GT], 2020.
- César Eliud Lozada, Centroids of Pascal triangles
- P. McMullen, Ch. Schulz and J.M. Wills, Polyhedral manifolds in E^3 with unusually large genus, Israel J. Math. 46:127-144, 1983. [From _Jonathan Vos Post_, Jul 25 2009]
- Toufik Mansour, Restricted permutations by patterns of type (2,1), arXiv:math/0202219 [math.CO], 2002.
- Michael Penn, An awesome number theory contest problem, YouTube video, 2022.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Len Smiley, Hardy's algorithm.
- Nsibiet E. Udo, Praise Adeyemo, Balazs Szendroi, and Stavros Argyrios Papadakis, Ideals, representations and a symmetrised Bernoulli triangle, arXiv:2409.10278 [math.AC], 2024. See pp. 2,4,8.
- Eric Weisstein's World of Mathematics, Graph Genus.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Crossrefs
Programs
-
GAP
List([0..30],n->(n-1)*2^n+1); # Muniru A Asiru, Oct 24 2018
-
Magma
[(n-1)*2^n + 1: n in [0..40]]; // Vincenzo Librandi, Nov 21 2014
-
Maple
A000337 := proc(n) 1+(n-1)*2^n ; end proc: # R. J. Mathar, Oct 10 2011
-
Mathematica
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 1, k + 1], {k, 0, n}], {n, 0, 28}] (* Zerinvary Lajos, Jul 08 2009 *) Table[(n - 1) 2^n + 1, {n, 0, 40}] (* Harvey P. Dale, Jun 21 2011 *) LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40] (* Harvey P. Dale, Jun 21 2011 *) CoefficientList[Series[x / ((1 - x) (1 - 2 x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)
-
PARI
a(n)=if(n<0,0,(n-1)*2^n+1)
-
Python
a=lambda n:((n-1)<<(n))+1 # Indranil Ghosh, Jan 05 2017
Formula
G.f.: x/((1-x)*(1-2*x)^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x) - exp(2*x)*(1-2*x). a(n) = 4*a(n-1) - 4*a(n-2)+1, n>0. Series reversion of g.f. A(x) is x*A034015(-x). - Michael Somos
Binomial transform of n/(n+1) is a(n)/(n+1). - Paul Barry, Aug 19 2005
a(n) = A119258(n+1,n-1) for n>0. - Reinhard Zumkeller, May 11 2006
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n" (A059570) with "The odd numbers" (A005408), treating the result as if offset=0. - Graeme McRae, Jul 12 2006
a(n) = Sum_{k=1..n} k*2^(k-1), partial sums of A001787. - Zerinvary Lajos, Oct 19 2006
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3), n > 2. - Harvey P. Dale, Jun 21 2011
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
Comments