A000982 a(n) = ceiling(n^2/2).
0, 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405
Offset: 0
Examples
G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 13*x^5 + 18*x^6 + 25*x^7 + 32*x^8 + ... Centrosymmetric 3 X 3 matrix: [[a,b,c],[d,e,d],[c,b,a]], a(3) = 3*(3-1)/2 + (3-1)/2 + 1 = (3^2+1)/2 = 5 from a,b,c,d,e. 4 X 4 case: [[a,b,c,d],[e,f,g,h],[h,g,f,e],[d,c,b,a]], a(4) = 4*4/2 = 8. - _Wolfdieter Lang_, Oct 12 2015 a(3) = 5. The alternating permutation of length 3 + 1 = 4 with the maximum number of copies of 123 is 1324. The five copies are 12, 13, 14, 23, and 24. - _Lara Pudwell_, Dec 01 2020
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Nikolai Beluhov, Snake paths in king and knight graphs, arXiv:2301.01152 [math.CO], 2023.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, t_{N0}(n,4) in theorem 5.
- Andrea C. Burgess, Caleb W. Jones, and David A. Pike, Extending Graph Burning to Hypergraphs, arXiv:2403.01001 [math.CO], 2024. See p. 9.
- Geoffrey B. Campbell, Vector Partition Identities for 2D, 3D and nD Lattices, arXiv:2302.01091 [math.CO], 2023.
- Ronald Cools, Ian H. Sloan, Minimial cubature formulae of trigonometric degree, Math. Comp. 65 (216) (1996) 1583-1600. Table 1 dimension 2.
- John Elias, Illustration of Initial Terms: Intersection of a double spaced square grid and centrally aligned triangle.
- J. G. Kalbfleisch and R. G. Stanton, A combinatorial problem in matching, J. London Math. Soc. Vol. 1, No. 1 (1969), 60-64. [Corrected by _N. J. A. Sloane_, Feb 08 2019]
- J. M. Kantor, Mathématiques venues d'ailleurs: divertissements mathématiques en U.R.S.S., Le cube transpercé, pp. 56-62, Belin, Paris, 1982.
- S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta, and K.M. Tamizhmani, Blending two discrete integrability criteria: ..., arXiv:nlin/0104020 [nlin.SI], 2001.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society, 67.7 (2020), 994-1001.
- Eric Weisstein's World of Mathematics, Black Bishop Graph
- Eric Weisstein's World of Mathematics, Edge Cover Number
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Topology
- Eric Weisstein's World of Mathematics, Vertex Count
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Haskell
a000982 = (`div` 2) . (+ 1) . (^ 2) -- Reinhard Zumkeller, Jun 27 2013
-
Magma
[(2*n^2 + 1 - (-1)^n) / 4: n in [0..60]]; // Vincenzo Librandi, Jun 16 2011
-
Maple
seq( ceil(n^2/2),n=0..30) ; # R. J. Mathar, Jun 05 2011
-
Mathematica
Table[Ceiling[n^2/2], {n, 0, 120}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *) Accumulate[Join[{0}, (# - Boole[EvenQ[#]] &) /@ Range[80]]] (* Alonso del Arte, Sep 11 2019 *)
-
PARI
a(n)=(n^2+1)\2 \\ Charles R Greathouse IV, Sep 13 2013
-
PARI
x='x+O('x^100); concat([0], Vec(x*(1+x^2)/((1+x)*(1-x)^3))) \\ Altug Alkan, Oct 12 2015
-
PARI
apply( A000982(n)=n^2\/2, [0..55]) \\ M. F. Hasler, Feb 29 2020
-
Python
def A000982(n): return n**2+1>>1 # Chai Wah Wu, Aug 28 2023
-
Scala
(((1 to 49) by 2) flatMap { List.fill(2)() }).scanLeft(0)( + ) // _Alonso del Arte, Sep 11 2019
Formula
a(2*n) = 2*n^2, a(2*n+1) = 2*n^2 + 2*n + 1.
G.f.: -x*(1+x^2) / ( (1+x)*(x-1)^3 ). - Simon Plouffe in his 1992 dissertation
From Benoit Cloitre, Nov 06 2002: (Start)
a(n) = (2*n^2 + 1 - (-1)^n) / 4.
a(0)=0, a(1)=1; for n>1, a(n+1) = n + 1 + max(2*floor(a(n)/2), 3*floor(a(n)/3)). (End)
G.f.: (x + x^2 + x^3 + x^4)/((1 - x)*(1 - x^2)^2), not reduced. - Len Smiley
a(n) = a(n-2) + 2n - 2. - Paul Barry, Jul 17 2004
From Paul Barry, Jul 22 2004: (Start)
G.f.: x*(1+x^2)/((1-x^2)*(1-x)^2) = x*(1+x^2)/((1+x)*(1-x)^3);
a(n) = Sum_{k=0..n} (k^2 - k + 1 - 0^k)*(-1)^(n-k);
a(n) = Sum_{k=0..n} (1 + (-1)^(n-k) - 0^(n-k))*k. (End)
From Reinhard Zumkeller, Feb 27 2006: (Start)
a(0) = 0, a(n+1) = a(n) + 2*floor(n/2) + 1.
Starting with offset 1, = row sums of triangle A134444. Also, with offset 1, = binomial transform of [1, 1, 2, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Oct 25 2007
a(n) = floor((n^2+1)/2). - William A. Tedeschi, Feb 27 2008
a(n) = A004526(n+1) + A000217(n-1). - Yosu Yurramendi, Sep 12 2008, corrected by Klaus Purath, Jun 15 2021
From Jaume Oliver Lafont, Dec 05 2008: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + 2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n) = n^2 - floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
Euler transform is length 4 sequence [2, 2, 0, -1].
a(n) = a(-n) for all n in Z. - Michael Somos, May 05 2015
a(n) is also the number of independent entries in a centrosymmetric n X n matrix: M(i, j) = M(n-i+1, n-j+1). - Wolfdieter Lang, Oct 12 2015
For n > 1, a(n+1)/a(n) = 3 - A081352(n-2)/a(n). - Miko Labalan, Mar 26 2016
E.g.f.: (1/2)*(x*(1 + x)*cosh(x) + (1 + x + x^2)*sinh(x)). - Stefano Spezia, Feb 03 2020
a(n) = binomial(n+1,2) - floor(n/2). - César Eliud Lozada, Oct 25 2020
From Klaus Purath, Jun 15 2021: (Start)
a(n-1) + a(n) = A002061(n).
a(n) = (a(n-1)^2 + 1) / a(n-2), n >= 3 odd.
a(n) = (a(n-1)^2 - (n-1)^2) / a(n-2), n >= 4 even. (End)
Comments