A001044 a(n) = (n!)^2.
1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000
Offset: 0
Examples
Consider the square array 1, 2, 3, 4, 5, 6, ... 2, 4, 6, 8, 10, 12, ... 3, 6, 9, 12, 15, 18, ... 4, 8, 12, 16, 20, 24, ... 5, 10, 15, 20, 25, 30, ... ... then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003 a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012 1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...
References
- Archimedeans Problems Drive, Eureka, 22 (1959), 15.
- David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.
- J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).
- S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968.
- G. S. Kazandzidis, On a Conjecture of Moessner and a General Problem, Bull. Soc. Math. Grèce, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30, 1961.
- S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127. [Annotated scanned copy]
- T. Khovanova and W. Zhao, Mathematics of a Sudo-Kurve, arXiv:1808.06713 [math.HO], 2018.
- S. Kitaev and J. Remmel, Classifying descents according to parity, Annals of Combinatorics, 11, 2007, 173-193.
- Rob Pratt (Proposer), Problem 11573, Amer. Math. Monthly, 120 (2013), 372.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Simone Severini, Home page
- Index to divisibility sequences
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
GAP
List([0..20],n->Factorial(n)^2); # Muniru A Asiru, Oct 24 2018
-
Haskell
import Data.List (genericIndex) a001044 n = genericIndex a001044_list n a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list -- Reinhard Zumkeller, Sep 05 2015
-
Magma
[Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Oct 24 2018
-
Maple
seq((n!)^2,n=0..20); # Dennis P. Walsh, Nov 26 2012
-
Mathematica
Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *) Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* Harvey P. Dale, Mar 31 2020 *)
-
PARI
a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011
-
Python
import math for n in range(0,20): print(math.factorial(n)**2, end=', ') # Stefano Spezia, Oct 29 2018
Formula
a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - Karol A. Penson, Oct 09 2001
a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - Philippe Deléham, Jan 07 2004
a(n) = !n!1 = !n! = Product{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
From Sergei N. Gladkovskii, Jun 14 2012: (Start)
A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).
Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.
(End).
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - Mircea Merca, Nov 12 2013
Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016
From Ivan N. Ianakiev, Aug 16 2016: (Start)
a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.
a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.
(End).
From Ilya Gutkovskiy, Aug 16 2016: (Start)
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)
Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - Vaclav Kotesovec, Feb 19 2022
a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - Ira M. Gessel, Dec 10 2024
Extensions
More terms from James Sellers, Sep 19 2000
More terms from Simone Severini, Feb 15 2006
Comments