cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A090758 Numbers k which occur exactly twice in A001600.

Original entry on oeis.org

5, 13, 15, 17, 19, 24, 29, 37, 44, 45, 46, 47, 61, 73, 75, 85, 86, 87, 99, 105, 107, 144, 145, 149, 171, 173, 186, 187, 197, 203, 205, 224, 245, 252, 270, 272, 276, 279, 282, 284
Offset: 1

Views

Author

R. K. Guy, Feb 08 2004

Keywords

Examples

			k = 61 is a term because m*tau(m)/sigma(m) = 61 if and only if m = 2^30 * 61 * (2^31-1) or m = 2^60 * (2^61-1). - _Jinyuan Wang_, Mar 05 2020
		

Crossrefs

A090759 Numbers n which occur at least twice in A001600.

Original entry on oeis.org

5, 13, 15, 17, 19, 24, 27, 29, 37, 44, 45, 46, 47, 49, 51, 53, 61, 73, 75, 85, 86, 87, 89, 91, 96, 97, 99, 101, 105, 107, 144, 145, 149, 168, 169, 171, 173, 176, 181, 184, 186, 187, 188, 189, 191, 195, 197, 203, 205, 224, 240, 245, 252, 264, 270, 272
Offset: 1

Views

Author

R. K. Guy, Feb 08 2004

Keywords

References

  • T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.

Crossrefs

A090760 Numbers n which occur exactly three times in A001600.

Original entry on oeis.org

27, 49, 51, 53, 89, 91, 97, 101, 168, 169, 181, 193, 195, 240, 264
Offset: 1

Views

Author

R. K. Guy, Feb 08 2004

Keywords

References

  • T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.

Crossrefs

A090761 Numbers n which occur at least three times in A001600.

Original entry on oeis.org

27, 49, 51, 53, 89, 91, 96, 97, 101, 168, 169, 176, 181, 184, 188, 189, 191, 195, 240, 264, 285
Offset: 1

Views

Author

R. K. Guy, Feb 08 2004

Keywords

References

  • T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.

Crossrefs

A090762 Numbers n which occur exactly 4 times in A001600.

Original entry on oeis.org

96, 176, 184, 188, 189, 191, 285
Offset: 1

Views

Author

R. K. Guy, Feb 08 2004

Keywords

References

  • T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.

Crossrefs

A001599 Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.

Original entry on oeis.org

1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1

Views

Author

Keywords

Comments

Note that the harmonic mean of the divisors of k = k*tau(k)/sigma(k).
Equivalently, k*tau(k)/sigma(k) is an integer, where tau(k) (A000005) is the number of divisors of k and sigma(k) is the sum of the divisors of k (A000203).
Equivalently, the average of the divisors of k divides k.
Note that the average of the divisors of k is not necessarily an integer, so the above wording should be clarified as follows: k divided by the average is an integer. See A007340. - Thomas Ordowski, Oct 26 2014
Ore showed that every perfect number (A000396) is harmonic. The converse does not hold: 140 is harmonic but not perfect. Ore conjectured that 1 is the only odd harmonic number.
Other examples of power mean numbers k such that some power mean of the divisors of k is an integer are the RMS numbers A140480. - Ctibor O. Zizka, Sep 20 2008
Conjecture: Every harmonic number is practical (A005153). I've verified this refinement of Ore's conjecture for all terms less than 10^14. - Jaycob Coleman, Oct 12 2013
Conjecture: All terms > 1 are Zumkeller numbers (A083207). Verified for all n <= 50. - Ivan N. Ianakiev, Nov 22 2017
Verified for n <= 937. - David A. Corneth, Jun 07 2020
Kanold (1957) proved that the asymptotic density of the harmonic numbers is 0. - Amiram Eldar, Jun 01 2020
Zachariou and Zachariou (1972) called these numbers "Ore numbers", after the Norwegian mathematician Øystein Ore (1899 - 1968), who was the first to study them. Ore (1948) and Garcia (1954) referred to them as "numbers with integral harmonic mean of divisors". The term "harmonic numbers" was used by Pomerance (1973). They are sometimes called "harmonic divisor numbers", or "Ore's harmonic numbers", to differentiate them from the partial sums of the harmonic series. - Amiram Eldar, Dec 04 2020
Conjecture: all terms > 1 have a Mersenne prime as a factor. - Ivan Borysiuk, Jan 28 2024

Examples

			k=140 has sigma_0(140)=12 divisors with sigma_1(140)=336. The average divisor is 336/12=28, an integer, and divides k: k=5*28, so 140 is in the sequence.
k=496 has sigma_0(496)=10, sigma_1(496)=992: the average divisor 99.2 is not an integer, but k/(sigma_1/sigma_0)=496/99.2=5 is an integer, so 496 is in the sequence.
		

References

  • G. L. Cohen and Deng Moujie, On a generalization of Ore's harmonic numbers, Nieuw Arch. Wisk. (4), 16 (1998) 161-172.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

See A003601 for analogs referring to arithmetic mean and A000290 for geometric mean of divisors.
See A001600 and A090240 for the integer values obtained.
sigma_0(n) (or tau(n)) is the number of divisors of n (A000005).
sigma_1(n) (or sigma(n)) is the sum of the divisors of n (A000203).
Cf. A007340, A090945, A035527, A007691, A074247, A053783. Not a subset of A003601.
Cf. A027750.

Programs

  • GAP
    Concatenation([1],Filtered([2,4..2000000],n->IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
    
  • Haskell
    import Data.Ratio (denominator)
    import Data.List (genericLength)
    a001599 n = a001599_list !! (n-1)
    a001599_list = filter ((== 1) . denominator . hm) [1..] where
       hm x = genericLength ds * recip (sum $ map (recip . fromIntegral) ds)
              where ds = a027750_row x
    -- Reinhard Zumkeller, Jun 04 2013, Jan 20 2012
    
  • Maple
    q:= (p,k) -> p^k*(p-1)*(k+1)/(p^(k+1)-1):
    filter:= proc(n) local t; mul(q(op(t)),t=ifactors(n)[2])::integer end proc:
    select(filter, [$1..10^6]); # Robert Israel, Jan 14 2016
  • Mathematica
    Do[ If[ IntegerQ[ n*DivisorSigma[0, n]/ DivisorSigma[1, n]], Print[n]], {n, 1, 1550000}]
    Select[Range[1600000],IntegerQ[HarmonicMean[Divisors[#]]]&] (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    a(n)=if(n<0,0,n=a(n-1);until(0==(sigma(n,0)*n)%sigma(n,1),n++);n) /* Michael Somos, Feb 06 2004 */
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return (n*sigma(n, 0))%sigma(n, 1) == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
    
  • Python
    from itertools import count, islice
    from functools import reduce
    from math import prod
    from sympy import factorint
    def A001599_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
                yield n
    A001599_list = list(islice(A001599_gen(),20)) # Chai Wah Wu, Feb 14 2023

Formula

{ k : A106315(k) = 0 }. - R. J. Mathar, Jan 25 2017

Extensions

More terms from Klaus Brockhaus, Sep 18 2001

A057660 a(n) = Sum_{k=1..n} n/gcd(n,k).

Original entry on oeis.org

1, 3, 7, 11, 21, 21, 43, 43, 61, 63, 111, 77, 157, 129, 147, 171, 273, 183, 343, 231, 301, 333, 507, 301, 521, 471, 547, 473, 813, 441, 931, 683, 777, 819, 903, 671, 1333, 1029, 1099, 903, 1641, 903, 1807, 1221, 1281, 1521, 2163, 1197, 2101, 1563, 1911, 1727
Offset: 1

Views

Author

Henry Gould, Oct 15 2000

Keywords

Comments

Also sum of the orders of the elements in a cyclic group with n elements, i.e., row sums of A054531. - Avi Peretz (njk(AT)netvision.net.il), Mar 31 2001
Also inverse Moebius transform of EulerPhi(n^2), A002618.
Sequence is multiplicative with a(p^e) = (p^(2*e+1)+1)/(p+1). Example: a(10) = a(2)*a(5) = 3*21 = 63.
a(n) is the number of pairs (a, b) such that the equation ax = b is solvable in the ring (Zn, +, x). See the Mathematical Reflections link. - Michel Marcus, Jan 07 2017
From Jake Duzyk, Jun 06 2023: (Start)
These are the "contraharmonic means" of the improper divisors of square integers (inclusive of 1 and the square integer itself).
Permitting "Contraharmonic Divisor Numbers" to be defined analogously to Øystein Ore's Harmonic Divisor Numbers, the only numbers for which there exists an integer contraharmonic mean of the divisors are the square numbers, and a(n) is the n-th integer contraharmonic mean, expressible also as the sum of squares of divisors of n^2 divided by the sum of divisors of n^2. That is, a(n) = sigma_2(n^2)/sigma(n^2).
(a(n) = A001157(k)/A000203(k) where k is the n-th number such that A001157(k)/A000203(k) is an integer, i.e., k = n^2.)
This sequence is an analog of A001600 (Harmonic means of divisors of harmonic numbers) and A102187 (Arithmetic means of divisors of arithmetic numbers). (End)

References

  • David M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 152.
  • H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), Vol. 39, No. 1 (1997), pp. 11-35.
  • H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), Vol. 39, No. 2 (1997), pp. 183-194.

Crossrefs

Programs

  • Haskell
    a057660 n = sum $ map (div n) $ a050873_row n
    -- Reinhard Zumkeller, Nov 25 2013
    
  • Mathematica
    Table[ DivisorSigma[ 2, n^2 ] / DivisorSigma[ 1, n^2 ], {n, 1, 128} ]
    Table[Total[Denominator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*eulerphi(d)))
    
  • PARI
    a(n)=sumdivmult(n,d, eulerphi(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import gcd
    def A057660(n): return sum(n//gcd(n,k) for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A057660(n): return prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = Sum_{d|n} d*A000010(d) = Sum_{d|n} d*A054522(n,d), sum of d times phi(d) for all divisors d of n, where phi is Euler's phi function.
a(n) = sigma_2(n^2)/sigma_1(n^2) = A001157(A000290(n))/A000203(A000290(n)) = A001157(A000290(n))/A065764(n). - Labos Elemer, Nov 21 2001
a(n) = Sum_{d|n} A000010(d^2). - Enrique Pérez Herrero, Jul 12 2010
a(n) <= (n-1)*n + 1, with equality if and only if n is noncomposite. - Daniel Forgues, Apr 30 2013
G.f.: Sum_{n >= 1} n*phi(n)*x^n/(1 - x^n) = x + 3*x^2 + 7*x^3 + 11*x^4 + .... Dirichlet g.f.: sum {n >= 1} a(n)/n^s = zeta(s)*zeta(s-2)/zeta(s-1) for Re s > 3. Cf. A078747 and A176797. - Peter Bala, Dec 30 2013
a(n) = Sum_{i=1..n} numerator(n/i). - Wesley Ivan Hurt, Feb 26 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^phi(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} lcm(n,k)/k.
a(n) = Sum_{k=1..n} gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Vaclav Kotesovec, Jun 13 2021: (Start)
Sum_{k=1..n} a(k)/k ~ 3*zeta(3)*n^2/Pi^2.
Sum_{k=1..n} k^2/a(k) ~ A345294 * n.
Sum_{k=1..n} k*A000010(k)/a(k) ~ A345295 * n. (End)
Sum_{k=1..n} a(k) ~ 2*zeta(3)*n^3/Pi^2. - Vaclav Kotesovec, Jun 10 2023

Extensions

More terms from James Sellers, Oct 16 2000

A007340 Numbers whose divisors' harmonic and arithmetic means are both integers.

Original entry on oeis.org

1, 6, 140, 270, 672, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000
Offset: 1

Views

Author

Keywords

Comments

Intersection of A001599 and A003601.
The following are also in A046985: 1, 6, 672, 30240, 32760. Also contains multiply perfect (A007691) numbers. - Labos Elemer
The numbers whose average divisor is also a divisor. Ore's harmonic numbers A001599 without the numbers A046999. - Thomas Ordowski, Oct 26 2014, Apr 17 2022
Harmonic numbers k whose harmonic mean of divisors (A001600) is also a divisor of k. - Amiram Eldar, Apr 19 2022

Examples

			x = 270: Sigma(0, 270) = 16, Sigma(1, 270) = 720; average divisor a = 720/16 = 45 and integer 45 divides x, x/a = 270/45 = 6, but 270 is not in A007691.
		

References

  • G. L. Cohen, personal communication.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Wells, Curious and interesting numbers, Penguin Books, p. 124.

Crossrefs

Intersection of A003601 and A001599.
Different from A090945.

Programs

  • Haskell
    a007340 n = a007340_list !! (n-1)
    a007340_list = filter ((== 0) . a054025) a001599_list
    -- Reinhard Zumkeller, Dec 31 2013
    
  • Maple
    filter:= proc(n)
    uses numtheory;
    local a;
    a:= sigma(n)/sigma[0](n);
    type(a,integer) and type(n/a,integer);
    end proc:
    select(filter, [$1..2500000]); # Robert Israel, Oct 26 2014
  • Mathematica
    Do[ a = DivisorSigma[0, n]/ DivisorSigma[1, n]; If[IntegerQ[n*a] && IntegerQ[1/a], Print[n]], {n, 1, 2500000}] (* Labos Elemer *)
    ahmQ[n_] := Module[{dn = Divisors[n]}, IntegerQ[Mean[dn]] && IntegerQ[HarmonicMean[dn]]]; Select[Range[2500000], ahmQ] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    is(n)=my(d=divisors(n),s=vecsum(d)); s%#d==0 && #d*n%s==0 \\ Charles R Greathouse IV, Feb 07 2017

Formula

a = Sigma(1, x)/Sigma(0, x) integer and b = x/a also.

Extensions

More terms from Robert G. Wilson v, Oct 03 2002
Edited by N. J. A. Sloane, Oct 05 2008 at the suggestion of R. J. Mathar

A349473 Irregular triangle read by rows: the n-th row contains the elements in the continued fraction of the harmonic mean of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 2, 7, 2, 2, 13, 2, 4, 2, 1, 1, 5, 2, 1, 1, 3, 1, 1, 6, 2, 3, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 8, 2, 1, 3, 3, 1, 1, 9, 2, 1, 6, 2, 1, 1, 1, 2, 2, 2, 4, 1, 1, 11, 3, 5, 2, 2, 2, 1, 1, 2, 2, 2, 10, 2, 1, 2, 3, 3, 1, 1, 14
Offset: 1

Views

Author

Amiram Eldar, Nov 19 2021

Keywords

Comments

For an odd prime p > 3, the p-th row has a length 3 with a(p, 1) = a(p, 2) = 1 and a(p, 3) = (p-1)/2.
For a harmonic number m = A001599(k), the m-th row has a length 1 with a(k, 1) = A099377(m) = A001600(k).

Examples

			The first ten rows of the triangle are:
  1,
  1, 3,
  1, 2,
  1, 1, 2, 2,
  1, 1, 2,
  2,
  1, 1, 3,
  2, 7, 2,
  2, 13,
  2, 4, 2
  ...
		

Crossrefs

Cf. A349474 (row lengths).

Programs

  • Mathematica
    row[n_] := ContinuedFraction[DivisorSigma[0, n] / DivisorSigma[-1, n]]; Table[row[k], {k, 1, 29}] // Flatten

A090240 Numbers which occur as the harmonic mean of the divisors of m for some m.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 24, 25, 26, 27, 29, 31, 35, 37, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 60, 61, 70, 73, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 94, 96, 97, 99, 101, 102, 105, 106, 107, 108, 110, 114, 115
Offset: 1

Views

Author

R. K. Guy, Feb 08 2004

Keywords

Comments

The equation n = m*tau(m)/sigma(m) has an integer solution m.
Here tau(n) (A000005) is the number of divisors of n and sigma(n) is the sum of the divisors of n (A000203).
A001600 sorted in order.
The Mersenne exponents (A000043) are in this sequence because the even perfect numbers, 2^(p-1)*(2^p-1) where p is in A000043, are all harmonic numbers (A001599) with harmonic mean of divisors p. - Amiram Eldar, Apr 15 2024

References

  • For further references see A001599.

Crossrefs

Values of m are in A091911.
Complement of A157849.

Programs

  • Mathematica
    f[n_] := (n*DivisorSigma[0, n]/DivisorSigma[1, n]); a = Table[ 0, {120}]; Do[ b = f[n]; If[ IntegerQ[b] && b < 121 && a[[b]] == 0, a[[b]] = n], {n, 1, 560000000}]; Select[ Range[120], a[[ # ]] > 0 &] (* Robert G. Wilson v, Feb 14 2004 *)

Extensions

More terms from Robert G. Wilson v, Feb 14 2004
Showing 1-10 of 18 results. Next