A001629 Self-convolution of Fibonacci numbers.
0, 0, 1, 2, 5, 10, 20, 38, 71, 130, 235, 420, 744, 1308, 2285, 3970, 6865, 11822, 20284, 34690, 59155, 100610, 170711, 289032, 488400, 823800, 1387225, 2332418, 3916061, 6566290, 10996580, 18394910, 30737759, 51310978, 85573315, 142587180, 237387960, 394905492
Offset: 0
Examples
G.f. = x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 20*x^6 + 38*x^7 + 71*x^8 + 130*x^9 + ... - _Michael Somos_, Jun 24 2018
References
- Donald E. Knuth, Fundamental Algorithms, Addison-Wesley, 1968, p. 83, Eq. 1.2.8--(17). - Don Knuth, Feb 26 2019
- Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Chapter 15, page 187, "Hosoya's Triangle", and p. 375, eq. (32.13).
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989, p. 183, Nr.(98).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math. 335 (2014), 1--7. MR3248794.
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- Carlos Alirio Rico Acevedo and Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
- Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia, and Sabrina Mantaci, Hypercubes and Isometric Words based on Swap and Mismatch Distance, arXiv:2303.09898 [math.CO], 2023.
- Kassie Archer and Robert P. Laudone, Pattern avoidance and the fundamental bijection, arXiv:2407.06338 [math.CO], 2024. See p. 6.
- Ali Reza Ashrafi, Jernej Azarija, Khadijeh Fathalikhani, Sandi Klavžar and Marko Petkovšek, Vertex and edge orbits of Fibonacci and Lucas cubes, arXiv:1407.4962 [math.CO], 2014. See Table 2.
- Ali Reza Ashrafi, Jernej Azarija, Khadijeh Fathalikhani, Sandi Klavžar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.
- Jean-Luc Baril, Sergey Kirgizov and Vincent Vajnovszki, Gray codes for Fibonacci q-decreasing words, arXiv:2010.09505 [cs.DM], 2020.
- Daniel Birmajer, Juan Gil and Michael D. Weiner, Linear recurrence sequences and their convolutions via Bell polynomials, arXiv:1405.7727 [math.CO], 2014.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear Recurrence Sequences and Their Convolutions via Bell Polynomials, Journal of Integer Sequences, 18 (2015), #15.1.2.
- Matthew Blair, Rigoberto Flórez and Antara Mukherjee, Matrices in the Hosoya triangle, arXiv:1808.05278 [math.CO], 2018.
- Matthew Blair, Rigoberto Flórez and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Giuseppa Castiglione, Antonio Restivo and Marinella Sciortino, Circular Sturmian words and Hopcroft's algorithm, Theor. Comput. Sci. 410, No. 43, 4372-4381 (2009)
- Charles H. Conley and Valentin Ovsienko, Shadows of rationals and irrationals: supersymmetric continued fractions and the super modular group, arXiv:2209.10426 [math-ph], 2022.
- Éva Czabarka, Rigoberto Flórez and Leandro Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Eric S. Egge, Restricted 3412-Avoiding Involutions, p. 16, arXiv:math/0307050 [math.CO], 2003.
- Sergio Falcon, Half self-convolution of the k-Fibonacci sequence, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- Rigoberto Flórez, Robinson Higuita and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Napoleon Gauthier (Proposer), Problem H-703, Fib. Quart., 50 (2012), 379-381.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- Martin Griffiths, Digit Proportions in Zeckendorf Representations, Fibonacci Quart. 48 (2010), no. 2, 168-174.
- Verner E. Hoggatt, Jr. and M. Bicknell-Johnson, Fibonacci convolution sequences, Fib. Quart., 15 (1977), 117-122.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
- Omar Khadir, László Németh, and László Szalay, Tiling of dominoes with ranked colors, Results in Math. (2024) Vol. 79, Art. No. 253. See p. 8.
- Sandi Klavžar, On median nature and enumerative properties of Fibonacci-like cubes, Disc. Math. 299 (2005), 145-153.
- Sandi Klavžar, Structure of Fibonacci cubes: a survey, Institute of Mathematics, Physics and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia; Preprint series Vol. 49 (2011), 1150 ISSN 2232-2094. (See Section 4.)
- Toufik Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- Pieter Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- Pieter Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
- László Németh, Walks on tiled boards, arXiv:2403.12159 [math.CO], 2024. See p. 2.
- László Németh and László Szalay, Explicit solution of system of two higher-order recurrences, arXiv:2408.12196 [math.NT], 2024. See p. 10.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 18.
- Jeffrey B. Remmel and J. L. B. Tiefenbruck, Q-analogues of convolutions of Fibonacci numbers, Australasian Journal of Combinatorics, Volume 64(1) (2016), Pages 166-193.
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Fibonacci Cube Graph
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Crossrefs
Programs
-
GAP
List([0..40],n->Sum([0..n],k->Fibonacci(k)*Fibonacci(n-k))); # Muniru A Asiru, Jun 24 2018
-
Haskell
a001629 n = a001629_list !! (n-1) a001629_list = f [] $ tail a000045_list where f us (v:vs) = (sum $ zipWith (*) us a000045_list) : f (v:us) vs -- Reinhard Zumkeller, Jan 18 2014, Oct 16 2011
-
Magma
I:=[0,0,1,2]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-2*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Nov 19 2014
-
Maple
a:= n-> (<<2|1|0|0>, <1|0|1|0>, <-2|0|0|1>, <-1|0|0|0>>^n)[1,3]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 01 2008 # Alternative: A001629 := n -> `if`(n<2, 0, (n-1)*hypergeom([1-n/2, (3-n)/2], [1-n], -4)): seq(simplify(A001629(n)), n=0..37); # Peter Luschny, Apr 10 2018
-
Mathematica
Table[Sum[Binomial[n-i, i] i, {i, 0, n}], {n, 0, 34}] (* Geoffrey Critzer, May 04 2009 *) Table[Abs[(1 -(1/2 -I/2)(1 - (-1)^n))*Coefficient[CharacteristicPolynomial[ Array[KroneckerDelta[#1, #2] I + KroneckerDelta[#1 + 1, #2] + KroneckerDelta[#1 -1, #2] &, {n-1, n-1}], x], x]], {n,2,50}] (* John M. Campbell, Jun 23 2011 *) LinearRecurrence[{2,1,-2,-1}, {0,0,1,2}, 40] (* Harvey P. Dale, Aug 26 2013 *) CoefficientList[Series[x^2/(1-x-x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 19 2014 *) Table[(2nFibonacci[n-1] + (n-1)Fibonacci[n])/5, {n, 0, 40}] (* Vladimir Reshetnikov, May 08 2016 *) Table[With[{fibs=Fibonacci[Range[n]]},ListConvolve[fibs,fibs]],{n,-1,40}]//Flatten (* Harvey P. Dale, Aug 19 2018 *)
-
PARI
Vec(1/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-2,1,2]^n)[2,4] \\ Charles R Greathouse IV, Jul 20 2016
-
SageMath
def A001629(n): return (1/5)*(n*lucas_number2(n, 1, -1) - fibonacci(n)) [A001629(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022
Formula
G.f.: x^2/(1 - x - x^2)^2. - Simon Plouffe in his 1992 dissertation
a(n) = A037027(n-1, 1), n >= 1 (Fibonacci convolution triangle).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), n > 3.
a(n+1) = Sum_{i=0..F(n)} A007895(i), where F = A000045, the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
a(n) = Sum_{k=0..floor(n/2)-1} (k+1)*binomial(n-k-1, k+1). - Emeric Deutsch, Nov 15 2001
a(n) = floor( (1/5)*(n - 1/sqrt(5))*phi^n + 1/2 ) where phi=(1+sqrt(5))/2 is the golden ratio. - Benoit Cloitre, Jan 05 2003
a(n) = a(n-1) + A010049(n-1) for n > 0. - Emeric Deutsch, Dec 10 2003
a(n) = Sum_{k=0..floor((n-2)/2)} (n-k-1)*binomial(n-k-2, k). - Paul Barry, Jan 25 2005
a(n) = ((n-1)*F(n) + 2*n*F(n-1))/5, F(n)=A000045(n) (see Vajda and Koshy reference).
F'(n, 1), the first derivative of the n-th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = a(n-1) + a(n-2) + F(n-1), where F=A000045, the Fibonacci sequence. - Graeme McRae, Jun 02 2006
a(n) = (1/5)*(n-1/sqrt(5))*((1+sqrt(5))/2)^n + (1/5)*(n+1/sqrt(5))*((1-sqrt(5))/2)^n. - Graeme McRae, Jun 02 2006
a(n) = A055244(n-1) - F(n-2). Example: a(6) = 20 = A055244(5) - F(3) = (23 - 3). - Gary W. Adamson, Jul 27 2007
a(n) = term (1,3) in the 4 X 4 matrix [2,1,0,0; 1,0,1,0; -2,0,0,1; -1,0,0,0]^n. - Alois P. Heinz, Aug 01 2008
a(n) = A214178(n,1) for n > 0. - Reinhard Zumkeller, Jul 08 2012
a(n) = ((n+1)*F(n-1) + (n-1)*F(n+1))/5. - Richard R. Forberg, Aug 04 2014
(n-2)*a(n) - (n-1)*a(n-1) - n*a(n-2) = 0, n > 1. - Michael D. Weiner, Nov 18 2014
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} F(j-1)*F(i-j), where F(n) = A000045 Fibonacci Numbers. - Carlos A. Rico A., Jul 14 2016
a(n) = (n*Lucas(n) - Fibonacci(n))/5, where Lucas = A000032, Fibonacci = A000045. - Vladimir Reshetnikov, Sep 27 2016
a(n) = (n-1)*hypergeom([1-n/2, (3-n)/2], [1-n], -4) for n >= 2. - Peter Luschny, Apr 10 2018
a(n) = -(-1)^n a(-n) for all n in Z. - Michael Somos, Jun 24 2018
E.g.f.: (1/50)*exp(-2*x/(1+sqrt(5)))*(2*sqrt(5)-5*(-1+sqrt(5))*x+exp(sqrt(5)*x)*(-2*sqrt(5)+5*(1+sqrt(5))*x)). - Stefano Spezia, Sep 03 2019
From Peter Bala, Jan 14 2025: (Start)
a(2*n+1) is even and a(2*n) has the same parity as Fibonacci(n).
For n >= 1, a(n) = (2/n)*Sum_{k = 0..n} k*Fibonacci(k)*Fibonacci(n-k). (End)
Comments