A001850 Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
Offset: 0
Examples
G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
References
- Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
- L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
- D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1308 (all terms < 10^1000, first 201 terms from T. D. Noe)
- M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011), #11.8.1.
- B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "à la Lucas", arXiv:1603.04187 [math.NT], 2016.
- J.-M. Autebert, A.-M. Décaillot, and S. R. Schwer, H.-A. Delannoy et les oeuvres posthumes d'Édouard Lucas, Gazette des Mathématiciens - no 95, Jan 2003 (in French).
- J.-M. Autebert, M. Latapy, and S. R. Schwer, Le treillis des Chemins de Delannoy, Discrete Math., 258 (2002), 225-234.
- J.-M. Autebert and S. R. Schwer, On generalized Delannoy paths, SIAM J. Discrete Math., 16(2) (2003), 208-223.
- Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004.
- Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, Journal of Statistical Planning and Inference, 135(1) (2005), 40-54.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, 9 (2006), #06.2.4.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19 (2016), #16.3.5.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, 15 (2012), #12.4.8.
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv:1602.06445 [math.NT], 2016.
- H. Bateman, Some problems in potential theory, Messenger Math., 52 (1922), 71-78. [Annotated scanned copy]
- Raymond A. Beauregard and Vladimir A. Dobrushkin, Powers of a Class of Generating Functions, Mathematics Magazine, 89(5) (2016), 359-363.
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., 22 (2019), #19.3.5.
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv:1507.03227 [math-ph], 2015.
- J. S. Caughman et al., A note on lattice chains and Delannoy numbers, Discrete Math., 308 (2008), 2623-2628.
- Jia-Yu Chen and Chen Wang, Congruences concerning generalized central trinomial coefficients, arXiv:2012.04523 [math.NT], 2020.
- Johann Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- M. Coster, Email, Nov 1990.
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- R. M. Dickau, Delannoy and Motzkin Numbers [Many illustrations].
- R. M. Dickau, The 13 paths in a 4 X 4 grid.
- T. Doslic, Seven lattice paths to log-convexity, Acta Appl. Mathem. 110(3) (2010), 1373-1392.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308(11) (2008), 2182-2212. MR2404544 (2009j:05019) - _N. J. A. Sloane_, May 01 2012
- D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010), #10.9.2.
- Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
- M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, J. Int. Seq. 17 (2014), #14.1.5.
- Seth Finkelstein, Letter to N. J. A. Sloane, Mar 24 1990, with attachments.
- S. Garrabrant and I. Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Taras Goy and Mark Shattuck, Determinant identities for the Catalan, Motzkin and Schröder numbers, Art Disc. Appl. Math. (2023).
- Nate Harman, Andrew Snowden, and Noah Snyder, The Delannoy Category, arxiv:2211.15392 [math.RT], 2023.
- Tian-Xiao He, One-pth Riordan Arrays in the Construction of Identities, arXiv:2011.00173 [math.CO], 2020.
- M. D. Hirschhorn, How many ways can a king cross the board?, Austral. Math. Soc. Gaz., 27 (2000), 104-106.
- Nick Hobson, Python program for this sequence.
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- Milan Janjic, Two Enumerative Functions
- Svante Janson, Patterns in random permutations avoiding some sets of multiple patterns, arXiv:1804.06071 [math.PR], 2018.
- S. Kaparthi and H. R. Rao, Higher dimensional restricted lattice paths with diagonal steps, Discr. Appl. Math., 31 (1991), 279-289.
- D. E. Knuth and N. J. A. Sloane, Correspondence, December 1999.
- Daniel Krenn and Jeffrey Shallit, Strongly k-recursive sequences, arXiv:2401.14231 [cs.FL], 2024.
- D. F. Lawden, On the Solution of Linear Difference Equations, Math. Gaz., 36 (1952), 193-196.
- Tamás Lengyel, On some p-adic properties and supercongruences of Delannoy and Schröder Numbers, Integers (2021) Vol. 21, #A86.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 18.
- Max A. Little and Ugur Kayas, Polymorphic dynamic programming by algebraic shortcut fusion, arXiv:2107.01752 [cs.DS], 2021.
- Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
- Romeo Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878-2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, 20 (2017), #17.1.6.
- Leo Moser, Note 2487: King paths on a chessboard, Math. Gaz., 39 (1955), 54 (one page only).
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, 9 (2006), #06.2.7.
- P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., 3 (2000), #00.2.1.
- R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences, I: smooth points of the singular variety, arXiv:math/0003192 [math.CO], 2000.
- C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010), #10.1.8.
- F. Qi, X.-T. Shi and B.-N. Guo, Some properties of the Schroder numbers, Indian J. Pure Appl. Math 47 (4) (2016) 717-732.
- J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38
- J. Riordan, Letter, Jul 06 1978.
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- E. Rowland and D. Zeilberger, A Case Study in Meta-AUTOMATION: AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences, arXiv:1311.4776 [math.CO], 2013.
- S. Samieinia, The number of continuous curves in digital geometry, Research Reports in Mathematics, Number 3, 2008.
- S. R. Schwer and J.-M. Auterbert, Henri-Auguste Delannoy, une biographie, Math. & Sci. hum. / Mathematical Social Sciences, 43e année, no. 174 (2006), 25-67.
- Seunghyun Seo, The Catalan Threshold Arrangement, Journal of Integer Sequences, 20 (2017), #17.1.1.
- T. Sillke, The Delannoy numbers.
- Mark Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013), 93-101.
- Zhao Shen, On the 3-adic valuation of a class of Apery-like numbers, arXiv:2112.11135 [math.NT], 2021.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
- R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, 3 (2000), #00.1.
- R. A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, 5 (2002), #03.1.5.
- R. A. Sulanke et al., Another description of the central Delannoy numbers, Problem 10894, Amer. Math. Monthly, 110(5) (2003), 443-444.
- Zhi-Wei Sun, On Delannoy numbers and Schroeder numbers, Journal of Number Theory 131(12) (2011), 2387-2397. doi:10.1016/j.jnt.2011.06.005
- Marius Tarnauceanu, The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European Journal of Combinatorics 30(1) (2009), 283-287.
- Bernhard Von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete & Computational Geometry 21(4) (1999), 557-568. See Eq. (3.7).
- Rong-Hua Wang and Michael X. X. Zhong, Congruences for sums of Delannoy numbers and polynomials, arXiv:2505.05728 [math.CO], 2025. See p. 2.
- Yi Wang, Sai-Nan Zheng, and Xi Chen, Analytic aspects of Delannoy numbers, Discrete Mathematics 342.8 (2019): 2270-2277.
- Eric Weisstein's World of Mathematics, Delannoy Number.
- Eric Weisstein's World of Mathematics, Schmidt's Problem.
- W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
Crossrefs
Programs
-
Maple
seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006 seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
-
Mathematica
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *) a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *) CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *) Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *) a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *) a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
-
Maxima
a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n); makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
-
PARI
{a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
-
PARI
{a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
-
PARI
{a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
-
PARI
a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
-
PARI
/* same as in A092566 but use */ steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
-
PARI
my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
-
Python
# from Nick Hobson. def f(a, b): if a == 0 or b == 0: return 1 return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1) [f(n, n) for n in range(7)]
-
Python
from gmpy2 import divexact A001850 = [1, 3] for n in range(2,10**3): A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n)) # Chai Wah Wu, Sep 01 2014
-
Sage
a = lambda n: hypergeometric([-n, -n], [1], 2) [simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014
Formula
a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
a(n) = Sum_{k=0..n} C(n+k, 2*k) * C(2*k, k). - Greg Dresden and Leo Zhang, Jul 11 2025
Extensions
New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996
Comments