A000215
Fermat numbers: a(n) = 2^(2^n) + 1.
Original entry on oeis.org
3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, 115792089237316195423570985008687907853269984665640564039457584007913129639937
Offset: 0
a(0) = 1*2^1 + 1 = 3 = 1*(2*1) + 1.
a(1) = 1*2^2 + 1 = 5 = 1*(2*2) + 1.
a(2) = 1*2^4 + 1 = 17 = 2*(2*4) + 1.
a(3) = 1*2^8 + 1 = 257 = 16*(2*8) + 1.
a(4) = 1*2^16 + 1 = 65537 = 2048*(2*16) + 1.
a(5) = 1*2^32 + 1 = 4294967297 = 641*6700417 = (10*(2*32) + 1)*(104694*(2*32) + 1).
a(6) = 1*2^64 + 1 = 18446744073709551617 = 274177*67280421310721 = (2142*(2*64) + 1)*(525628291490*(2*64) + 1).
- M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2nd. ed., 2001; see p. 3.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 7.
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 87.
- James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, pp. 78-79.
- R. K. Guy, Unsolved Problems in Number Theory, A3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 14.
- E. Hille, Analytic Function Theory, Vol. I, Chelsea, N.Y., see p. 64.
- T. Koshy, "The Digital Root Of A Fermat Number", Journal of Recreational Mathematics Vol. 32 No. 2 2002-3 Baywood NY.
- M. Krizek, F. Luca & L. Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001.
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, p. 36.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see pp. 18, 59.
- C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 202.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 6-7, 70-75.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 148-149.
- N. J. A. Sloane, Table of n, a(n) for n = 0..11
- Richard Bellman, A note on relatively prime sequences, Bull. Amer. Math. Soc. 53 (1947), 778-779.
- Chris Bispels, Matthew Cohen, Joshua Harrington, Joshua Lowrance, Kaelyn Pontes, Leif Schaumann, and Tony W. H. Wong, A further investigation on covering systems with odd moduli, arXiv:2507.16135 [math.NT], 2025. See p. 3.
- Chris K. Caldwell, The Prime Glossary, Fermat number.
- Chris K. Caldwell, The prime pages All prime-square Mersenne divisors are Wieferich (2021).
- Shane Chern, Fermat Numbers in Multinomial Coefficients, J. Int. Seq. 17 (2014) # 14.3.2.
- Leonhard Euler, Observations on a theorem of Fermat and others on looking at prime numbers, arXiv:math/0501118 [math.HO], 2005-2008.
- Leonhard Euler, Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus.
- Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
- Richard K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 12.
- Wilfrid Keller, Prime factors k.2^n + 1 of Fermat numbers F_m
- Jiří Klaška, Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem, J. Int. Seq., Vol. 26 (2023), Article 23.3.8.
- T.-W. Leung, A Brief Introduction to Fermat Numbers
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012
- Romeo Meštrović, Goldbach-type conjectures arising from some arithmetic progressions, University of Montenegro, 2018.
- Romeo Meštrović, Goldbach's like conjectures arising from arithmetic progressions whose first two terms are primes, arXiv:1901.07882 [math.NT], 2019.
- Michael A. Morrison and John Brillhart, The factorization of F_7, Bull. Amer. Math. Soc. 77 (1971), 264.
- Robert Munafo, Fermat Numbers
- Robert Munafo, Notes on Fermat numbers
- Seppo Mustonen, On integer sequences with mutual k-residues.
- Seppo Mustonen, On integer sequences with mutual k-residues. [Local copy]
- OEIS Wiki, Fermat numbers.
- OEIS Wiki, Sierpinski's triangle.
- G. A. Paxson, The compositeness of the thirteenth Fermat number, Math. Comp. 15 (76) (1961) 420-420.
- Carl Pomerance, A tale of two sieves, Notices Amer. Math. Soc., 43 (1996), 1473-1485.
- P. Sanchez, PlanetMath.org, Fermat Numbers
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38. Local copy, included here with permission from the editors of Quadrature.
- G. Villemin's Almanach of Numbers, Nombres de Fermat.
- Le Roy J. Warren, Henry G. Bray, On the square-freeness of Fermat and Mersenne Numbers, Pac. J. Math. 22 (3) (1967) 563.
- Eric Weisstein's World of Mathematics, Fermat Number.
- Eric Weisstein's World of Mathematics, Generalized Fermat Number.
- Wikipedia, Fermat number.
- Wolfram Research, Fermat numbers are pairwise coprime.
See
A004249 for a similar sequence.
Cf.
A080176 for binary representation of Fermat numbers.
Cf.
A000058,
A000120,
A000225,
A006943,
A007814,
A014118,
A077585,
A242619,
A242620,
A257916,
A257917.
Cf.
A000058,
A000120,
A000225,
A006943,
A007814,
A014118,
A077585,
A242619,
A242620,
A257916,
A257917.
-
a000215 = (+ 1) . (2 ^) . (2 ^) -- Reinhard Zumkeller, Feb 13 2015
-
A000215 := n->2^(2^n)+1;
-
Table[2^(2^n) + 1, {n, 0, 8}] (* Alonso del Arte, Jun 07 2011 *)
-
A000215(n):=2^(2^n)+1$ makelist(A000215(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
-
a(n)=if(n<1,3*(n==0),(a(n-1)-1)^2+1)
-
def a(n): return 2**(2**n) + 1
print([a(n) for n in range(9)]) # Michael S. Branicky, Apr 19 2021
A047999
Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 2.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
Offset: 0
Triangle begins:
1,
1,1,
1,0,1,
1,1,1,1,
1,0,0,0,1,
1,1,0,0,1,1,
1,0,1,0,1,0,1,
1,1,1,1,1,1,1,1,
1,0,0,0,0,0,0,0,1,
1,1,0,0,0,0,0,0,1,1,
1,0,1,0,0,0,0,0,1,0,1,
1,1,1,1,0,0,0,0,1,1,1,1,
1,0,0,0,1,0,0,0,1,0,0,0,1,
...
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Brand, Neal; Das, Sajal; Jacob, Tom. The number of nonzero entries in recursively defined tables modulo primes. Proceedings of the Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1990). Congr. Numer. 78 (1990), 47--59. MR1140469 (92h:05004).
- John W. Milnor and James D. Stasheff, Characteristic Classes, Princeton University Press, 1974, pp. 43-49 (sequence appears on p. 46).
- H.-O. Peitgen, H. Juergens and D. Saupe: Chaos and Fractals (Springer-Verlag 1992), p. 408.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10584 [First 144 rows, flattened; first 50 rows from T. D. Noe].
- J.-P. Allouche and V. Berthe, Triangle de Pascal, complexité et automates, Bulletin of the Belgian Mathematical Society Simon Stevin 4.1 (1997): 1-24.
- J.-P. Allouche, F. v. Haeseler, H.-O. Peitgen and G. Skordev, Linear cellular automata, finite automata and Pascal's triangle, Discrete Appl. Math. 66 (1996), 1-22.
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.],
- J. Baer, Explore patterns in Pascal's Triangle
- Valentin Bakoev, Fast Bitwise Implementation of the Algebraic Normal Form Transform, Serdica J. of Computing 11 (2017), No 1, 45-57.
- Valentin Bakoev, Properties and links concerning M_n
- Thomas Baruchel, Flattening Karatsuba's Recursion Tree into a Single Summation, SN Computer Science (2020) Vol. 1, Article No. 48.
- Thomas Baruchel, A non-symmetric divide-and-conquer recursive formula for the convolution of polynomials and power series, arXiv:1912.00452 [math.NT], 2019.
- A. Bogomolny, Dot Patterns and Sierpinski Gasket
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, 2014.
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 9.
- S. Butkevich, Pascal Triangle Applet
- David Callan, Sierpinski's triangle and the Prouhet-Thue-Morse word, arXiv:math/0610932 [math.CO], 2006.
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part I
- B. Cherowitzo, Pascal's Triangle using Clock Arithmetic, Part II
- C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, arXiv:1411.1334 [math.NT], 2014; Journal of Difference Equations and Applications, Vol. 20, #11, 2014.
- Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- Brady Haran, Chaos Game, Numberphile video, YouTube (April 27, 2017).
- I. Kobayashi et al., Pascal's Triangle
- Dr. Math, Regular polygon formulas [Broken link?]
- Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
- National Curve Bank, Sierpinski Triangles
- Hieu D. Nguyen, A Digital Binomial Theorem, arXiv:1412.3181 [math.NT], 2014.
- S. Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010.
- A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quarterly, 31(2), 1993, pp. 112-120.
- F. Richman, Javascript for computing Pascal's triangle modulo n. Go to this page, then under "Modern Algebra and Other Things", click "Pascal's triangle modulo n".
- Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29. Also arXiv:1011.6083, 2010.
- N. J. A. Sloane, Illustration of rows 0 to 32 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 64 (encoignure style)
- N. J. A. Sloane, Illustration of rows 0 to 128 (encoignure style)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Eric Weisstein's World of Mathematics, Sierpiński Sieve, Rule 60, Rule 102
- Index entries for sequences related to cellular automata
- Index entries for triangles and arrays related to Pascal's triangle
- Index entries for sequences generated by sieves
Sequences based on the triangles formed by reading Pascal's triangle mod m: (this sequence) (m = 2),
A083093 (m = 3),
A034931 (m = 4),
A095140 (m = 5),
A095141 (m = 6),
A095142 (m = 7),
A034930(m = 8),
A095143 (m = 9),
A008975 (m = 10),
A095144 (m = 11),
A095145 (m = 12),
A275198 (m = 14),
A034932 (m = 16).
Cf.
A007318,
A054431,
A001317,
A008292,
A083093,
A034931,
A034930,
A008975,
A034932,
A166360,
A249133,
A064194,
A227133.
A106344 is a skew version of this triangle.
Triangle sums (see the comments):
A001316 (Row1; Related to Row2),
A002487 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23),
A007306 (Kn3, Kn4),
A060632 (Fi1, Fi2),
A120562 (Ca1, Ca2),
A112970 (Gi1, Gi2),
A127830 (Ze3, Ze4). (End)
-
import Data.Bits (xor)
a047999 :: Int -> Int -> Int
a047999 n k = a047999_tabl !! n !! k
a047999_row n = a047999_tabl !! n
a047999_tabl = iterate (\row -> zipWith xor ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Dec 11 2011, Oct 24 2010
-
A047999:= func< n,k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
[A047999(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
-
# Maple code for first M rows (here M=10) - N. J. A. Sloane, Feb 03 2016
ST:=[1,1,1]; a:=1; b:=2; M:=10;
for n from 2 to M do ST:=[op(ST),1];
for i from a to b-1 do ST:=[op(ST), (ST[i+1]+ST[i+2]) mod 2 ]; od:
ST:=[op(ST),1];
a:=a+n; b:=a+n; od:
ST; # N. J. A. Sloane
# alternative
A047999 := proc(n,k)
modp(binomial(n,k),2) ;
end proc:
seq(seq(A047999(n,k),k=0..n),n=0..12) ; # R. J. Mathar, May 06 2016
-
Mod[ Flatten[ NestList[ Prepend[ #, 0] + Append[ #, 0] &, {1}, 13]], 2] (* Robert G. Wilson v, May 26 2004 *)
rows = 14; ca = CellularAutomaton[60, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
Mod[#,2]&/@Flatten[Table[Binomial[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 26 2019 *)
-
\\ Recurrence for Pascal's triangle mod p, here p = 2.
p = 2; s=13; T=matrix(s,s); T[1,1]=1;
for(n=2,s, T[n,1]=1; for(k=2,n, T[n,k] = (T[n-1,k-1] + T[n-1,k])%p ));
for(n=1,s,for(k=1,n,print1(T[n,k],", "))) \\ Gerald McGarvey, Oct 10 2009
-
A011371(n)=my(s);while(n>>=1,s+=n);s
T(n,k)=A011371(n)==A011371(k)+A011371(n-k) \\ Charles R Greathouse IV, Aug 09 2013
-
T(n,k)=bitand(n-k,k)==0 \\ Charles R Greathouse IV, Aug 11 2016
-
def A047999_T(n,k):
return int(not ~n & k) # Chai Wah Wu, Feb 09 2016
Comments