cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A125053 Variant of triangle A008301, read by rows of 2*n+1 terms, such that the first column is the secant numbers (A000364).

Original entry on oeis.org

1, 1, 3, 1, 5, 15, 21, 15, 5, 61, 183, 285, 327, 285, 183, 61, 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385, 50521, 151563, 247065, 325947, 378105, 396363, 378105, 325947, 247065, 151563, 50521, 2702765, 8108295, 13311741, 17908935
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2006, Dec 20 2006

Keywords

Comments

Foata and Han refer to this as the triangle of Poupard numbers h_n(k). - N. J. A. Sloane, Feb 17 2014
Central terms (A125054) equal the binomial transform of the tangent numbers (A000182).

Examples

			If we write the triangle like this:
......................... ...1;
................... ...1, ...3, ...1;
............. ...5, ..15, ..21, ..15, ...5;
....... ..61, .183, .285, .327, .285, .183, ..61;
. 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385;
then the first nonzero term is the sum of the previous row:
1385 = 61 + 183 + 285 + 327 + 285 + 183 + 61,
the next term is 3 times the first:
4155 = 3*1385,
and the remaining terms in each row are obtained by the rule illustrated by:
6681 = 2*4155 - 1385 - 4*61;
8475 = 2*6681 - 4155 - 4*183;
9129 = 2*8475 - 6681 - 4*285;
8475 = 2*9129 - 8475 - 4*327;
6681 = 2*8475 - 9129 - 4*285;
4155 = 2*6681 - 8475 - 4*183;
1385 = 2*4155 - 6681 - 4*61.
An alternate recurrence is illustrated by:
4155 = 1385 + 2*(61 + 183 + 285 + 327 + 285 + 183 + 61);
6681 = 4155 + 2*(183 + 285 + 327 + 285 + 183);
8475 = 6681 + 2*(285 + 327 + 285);
9129 = 8475 + 2*(327);
and then for k>n, T(n,k) = T(n,2*n-k).
		

Crossrefs

Cf. A008301, A000364 (secant numbers, which are the row sums), A125054 (central terms), A125055, A000182, A008282.
Cf. A210111 (left half).

Programs

  • Haskell
    a125053 n k = a125053_tabf !! n !! k
    a125053_row n = a125053_tabf !! n
    a125053_tabf = iterate f [1] where
    f zs = zs' ++ reverse (init zs') where
    zs' = (sum zs) : g (map (* 2) zs) (sum zs)
    g [x] y = [x + y]
    g xs y = y' : g (tail $ init xs) y' where y' = sum xs + y
    -- Reinhard Zumkeller, Mar 17 2012
  • Maple
    T := proc(n, k) option remember; local j;
      if n = 1 then 1
    elif k = 1 then add(T(n-1, j), j=1..2*n-3)
    elif k = 2 then 3*T(n, 1)
    elif k > n then T(n, 2*n-k)
    else 2*T(n, k-1) - T(n, k-2) - 4*T(n-1, k-2)
      fi end:
    seq(print(seq(T(n,k), k=1..2*n-1)), n=1..5); # Peter Luschny, May 11 2014
  • Mathematica
    t[n_, k_] := t[n, k] = If[2*n < k || k < 0, 0, If[n == 0 && k == 0, 1, If[k == 0, Sum[t[n-1, j], {j, 0, 2*n-2}], If[k <= n, t[n, k-1] + 2*Sum[t[n-1, j], {j, k-1, 2*n-1-k}], t[n, 2*n-k]]]]]; Table[t[n, k], {n, 0, 6}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 06 2012, translated from Pari *)
  • PARI
    T(n,k)=if(2*n
    				

Formula

Sum_{k=0..2n} C(2n,k)*T(n,k) = 4^n * A000182(n), where A000182 are the tangent numbers.
Sum_{k=0..2n} (-1)^n*C(2n,k)*T(n,k) = (-4)^n.

A210108 Left half of Poupard's triangle, A008301.

Original entry on oeis.org

1, 1, 2, 4, 8, 10, 34, 68, 94, 104, 496, 992, 1420, 1712, 1816, 11056, 22112, 32176, 40256, 45496, 47312, 349504, 699008, 1026400, 1309568, 1528384, 1666688, 1714000, 14873104, 29746208, 43920304, 56696384, 67419664, 75523808, 80571184, 82285184, 819786496
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 17 2012

Keywords

Crossrefs

Cf. A002105 (left edge), A005799 (right edge); A210111.

Programs

  • Haskell
    a210108 n k = a210108_tabl !! n !! k
    a210108_row n = a210108_tabl !! n
    a210108_tabl = zipWith take [1..] a008301_tabf

Formula

T(n,k) = A008301(n,k), 0 <= k <= n.

A126155 Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 5 times first term.

Original entry on oeis.org

1, 1, 5, 1, 7, 35, 55, 35, 7, 139, 695, 1195, 1415, 1195, 695, 139, 5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, 5473, 357721, 1788605, 3175705, 4343885, 5126905, 5403005, 5126905, 4343885, 3175705, 1788605, 357721
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2006

Keywords

Examples

			The triangle begins:
  1;
  1, 5, 1;
  7, 35, 55, 35, 7;
  139, 695, 1195, 1415, 1195, 695, 139;
  5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, 5473;
  357721, 1788605, 3175705, 4343885, 5126905, 5403005, 5126905, 4343885, 3175705, 1788605, 357721; ...
If we write the triangle like this:
  .......................... ....1;
  ................... ....1, ....5, ....1;
  ............ ....7, ...35, ...55, ...35, ....7;
  ..... ..139, ..695, .1195, .1415, .1195, ..695, ..139;
  .5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, .5473;
then the first term in each row is the sum of the previous row:
  5473 = 139 + 695 + 1195 + 1415 + 1195 + 695 + 139
the next term is 5 times the first:
  27365 = 5*5473,
and the remaining terms in each row are obtained by the rule illustrated by:
  48145 = 2*27365 - 5473 - 8*139;
  63365 = 2*48145 - 27365 - 8*695;
  69025 = 2*63365 - 48145 - 8*1195;
  63365 = 2*69025 - 63365 - 8*1415;
  48145 = 2*63365 - 69025 - 8*1195;
  27365 = 2*48145 - 63365 - 8*695;
  5473 = 2*27365 - 48145 - 8*139.
An alternate recurrence is illustrated by:
  27365 = 5473 + 4*(139 + 695 + 1195 + 1415 + 1195 + 695 + 139);
  48145 = 27365 + 4*(695 + 1195 + 1415 + 1195 + 695);
  63365 = 48145 + 4*(1195 + 1415 + 1195);
  69025 = 63365 + 4*(1415);
and then for k>n, T(n,k) = T(n,2n-k).
		

Crossrefs

Cf. A126156 (column 0); diagonals: A126157, A126158; A126159; variants: A008301 (p=1), A125053 (p=2), A126150 (p=3).

Programs

  • Maple
    T := proc(n,k) option remember; local j;
      if n = 1 then 1
    elif k = 1 then add(T(n-1, j), j=1..2*n-3)
    elif k = 2 then 5*T(n, 1)
    elif k > n then T(n, 2*n-k)
    else 2*T(n, k-1)-T(n, k-2)-8*T(n-1, k-2)
      fi end:
    seq(print(seq(T(n,k), k=1..2*n-1)), n=1..6); # Peter Luschny, May 12 2014
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n==1, 1, k==1, Sum[T[n-1, j], {j, 1, 2n-3}], k==2, 5 T[n, 1], k>n, T[n, 2n-k], True, 2 T[n, k-1] - T[n, k-2] - 8 T[n-1, k-2]];
    Table[T[n, k], {n, 1, 6}, {k, 1, 2n-1}] (* Jean-François Alcover, Jun 15 2019, from Maple *)
  • PARI
    {T(n,k) = local(p=4);if(2*n
    				
  • PARI
    /* Alternate Recurrence: */
    {T(n,k) = local(p=4);if(2*n
    				
  • SageMath
    from functools import cache
    @cache
    def R(n, k):
          return (1 if n == 1 else sum(R(n-1, j) for j in range(1, 2*n-2))
                    if k == 1 else 5*R(n, 1) if k == 2 else R(n, 2*n-k)
                    if k > n else 2*R(n, k-1) - R(n, k-2) - 8*R(n-1, k-2))
    def A126155(n, k): return R(n+1, k+1)
    for n in range(5): print([A126155(n, k) for k in range(2*n+1)])
    # Peter Luschny, Dec 14 2023

Formula

Sum_{k=0..2n} (-1)^k*C(2n,k)*T(n,k) = (-8)^n.

A126150 Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 4 times first term.

Original entry on oeis.org

1, 1, 4, 1, 6, 24, 36, 24, 6, 96, 384, 636, 744, 636, 384, 96, 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976, 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416, 11449296, 45797184
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2006

Keywords

Examples

			Triangle begins:
  1;
  1, 4, 1;
  6, 24, 36, 24, 6;
  96, 384, 636, 744, 636, 384, 96;
  2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;
  151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...
If we write the triangle like this:
  .......................... ....1;
  ................... ....1, ....4, ....1;
  ............ ....6, ...24, ...36, ...24, ....6;
  ..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;
  .2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;
then the first term in each row is the sum of the previous row:
  2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96
the next term is 4 times the first:
  11904 = 4*2976,
and the remaining terms in each row are obtained by the rule illustrated by:
  20256 = 2*11904 - 2976 - 6*96;
  26304 = 2*20256 - 11904 - 6*384;
  28536 = 2*26304 - 20256 - 6*636;
  26304 = 2*28536 - 26304 - 6*744;
  20256 = 2*26304 - 28536 - 6*636;
  11904 = 2*20256 - 26304 - 6*384;
  2976 = 2*11904 - 20256 - 6*96.
An alternate recurrence is illustrated by:
  11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);
  20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);
  26304 = 20256 + 3*(636 + 744 + 636);
  28536 = 26304 + 3*(744);
and then for k>n, T(n,k) = T(n,2n-k).
		

Crossrefs

Cf. A126151 (column 0); diagonals: A126152, A126153; A126154; variants: A008301, A125053, A126155.

Programs

  • PARI
    T(n,k)=local(p=3);if(2*n
    				
  • PARI
    /* Alternate Recurrence: */ T(n,k)=local(p=3);if(2*n
    				

Formula

Sum_{k=0..2n} (-1)^k*C(2n,k)*T(n,k) = (-6)^n.

A002105 Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.

Original entry on oeis.org

1, 1, 4, 34, 496, 11056, 349504, 14873104, 819786496, 56814228736, 4835447317504, 495812444583424, 60283564499562496, 8575634961418940416, 1411083019275488149504, 265929039218907754399744, 56906245479134057176170496, 13722623393637762299131396096, 3704005473270641755597685653504
Offset: 1

Views

Author

Keywords

Comments

Comments from R. L. Graham, Apr 25 2006 and Jun 08 2006: "This sequence also gives the number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that the first token is a 1 and between every pair of tokens labeled i (i=1..n-1) there is exactly one token labeled i+1.
"For example, for n=3, there are 4 possibilities: 123123, 121323, 132312 and 132132 and indeed a(3) = 4. This is the work of my Ph. D. student Nan Zang. See also A117513, A117514, A117515.
"Develin and Sullivant give another occurrence of this sequence and show that their numbers have the same generating function, although they were unable to find a 1-1-mapping between their problem and Poupard's."
The sequence 1,0,1,0,4,0,34,0,496,0,11056, ... counts increasing complete binary trees with e.g.f. sec^2(x/sqrt 2). - Wenjin Woan, Oct 03 2007
a(n) = number of increasing full binary trees on vertex set [2n-1] with the left-largest property: the largest descendant of each non-leaf vertex occurs in its left subtree (Poupard). The first Mathematica recurrence below counts these trees by number 2k-1 of vertices in the left subtree of the root: the root is necessarily labeled 1 and n necessarily occurs in the left subtree and so there are Binomial[2n-3,2k-2] ways to choose the remaining labels for the left subtree. - David Callan, Nov 29 2007
Number of bilabeled unordered increasing trees with 2n labels. - Markus Kuba, Nov 18 2014
Conjecture: taking the sequence modulo an integer k gives an eventually purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 10 begins [1, 1, 4, 4, 6, 6, 4, 4, 6, 6, 4, 4, 6, 6, ...] with an apparent period [4, 4, 6, 6] of length 4 = phi(10) beginning at a(3). - Peter Bala, May 08 2023
Let c(1), c(2), c(3), ... be a geometric progression and s = (2*c(1)/c(2))^(1/2). Then c(1)*s*tan(x/s) = Sum_{n>0} a(n) * c(n) * x^(2*n-1) / (2*n-1)!. - Michael Somos, Jan 15 2025

Examples

			G.f. = x + x^2 + 4*x^3 + 34*x^4 + 496*x^5 + 11056*x^6 + 349504*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A008301.
Left edge of triangle A210108.

Programs

  • Magma
    A002105:= func< n | (-1)^(n+1)*2^n*(4^n - 1)*Bernoulli(2*n)/n >;
    [A002105(n): n in [1..30]]; // G. C. Greubel, Sep 20 2024
  • Maple
    S := proc(n, k) option remember; if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end: A002105 := n -> S(2*n-1, 2*n-1)/2^(n-1): seq(A002105(i),i=1..16); # Peter Luschny, Jul 08 2012
    # The above function written as a formula: a(n) = A008281(2*n-1, 2*n-1)/2^(n-1).
    # Alternatively, based on the triangular numbers A000217:
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else
    A000217(n - k + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
    a := n -> T(n, n): seq(a(n), n = 0..18);  # Peter Luschny, Sep 30 2023
  • Mathematica
    u[1] = 1; u[n_]/;n>=2 := u[n] = Sum[Binomial[2n-3,2k-2]u[k]u[n-k],{k,n-1}]; Table[u[n],{n,8}] (* Poupard and also Develin and Sullivant, give a different recurrence that involves a symmetric sum: v[1] = 1; v[n_]/;n>=2 := v[n] = 1/2 Sum[Binomial[2n-2,2k-1]v[k]v[n-k],{k,n-1}] *) (*David Callan, Nov 29 2007 *)
    a[n_] := (-1)^n 2^(n+1) PolyLog[1-2n, -1]; Array[a, 10] (* Vladimir Reshetnikov, Jan 23 2011 *)
    Table[(-1)^(n+1)*2^n*(2^(2n)-1)*BernoulliB[2n]/n,{n,1,20}] (* Vaclav Kotesovec, Nov 03 2014 *)
    eulerCF[f_, len_] := Module[{g}, g[len-1]=1; g[k_]:=g[k]=1-f[k]/(f[k]-1/g[k+1]); CoefficientList[g[0] + O[x]^len, x]]; A002105List[len_] := eulerCF[(1/2) x (#+1) (#+2)&, len]; A002105List[19] (* Peter Luschny, Aug 08 2015 after Sergei N. Gladkovskii *)
    Table[PolyGamma[2n-1, 1/2] 2^(2-n)/Pi^(2n), {n, 1, 10}] (* Vladimir Reshetnikov, Oct 18 2015 *)
    Table[EulerE[2n-1, 0] (-2)^n, {n, 1, 10}] (* Vladimir Reshetnikov, Oct 21 2015 *)
  • PARI
    {a(n) = if( n<1, 0, ((-2)^n - (-8)^n) * bernfrac(2*n) / n)}; /* Michael Somos, Jun 22 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, (2*n)! * polcoeff( -2 * log( cos(x / quadgen(8) + O(x^(2*n + 1)))), 2*n))}; /* Michael Somos, Jul 17 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, -(-2)^(n+1) * sum(i=1, 2*n, 2^-i * sum(j=1, i, (-1)^j * binomial( i-1, j-1) * j^(2*n - 1))))}; /* Michael Somos, Sep 07 2013 */
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n));if(n<1,return(0), for(k=1,n,CF=1/(1-(n-k+1)*(n-k+2)/2*x*CF));return(Vec(CF)[n]))}  /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,tanh(k*X)));n!*polcoeff(Egf,n)} /* Paul D. Hanna, May 11 2010 */
    
  • Python
    from sympy import bernoulli
    def A002105(n): return abs(((2-(2<<(m:=n<<1)))*bernoulli(m)<Chai Wah Wu, Apr 14 2023
    
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A002105_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; z = 1/2; b = True
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1, 0, -1) : D[k] += D[k+1]
                z *= 2
            else :
                for k in range(1, h+1, 1) :  D[k] += D[k-1]
            b = not b
            if b : R.append(D[h]*z/h)
        return R
    A002105_list(16) # Peter Luschny, Jun 29 2012
    
  • SageMath
    def A002105(n): return (-1)^(n+1)*2^n*(4^n -1)*bernoulli(2*n)/n
    [A002105(n) for n in range(1,31)] # G. C. Greubel, Sep 20 2024
    

Formula

E.g.f.: 2*log(sec(x / sqrt(2))) = Sum_{n>0} a(n) * x^(2*n) / (2*n)!. - Michael Somos, Jun 22 2002
A000182(n) = 2^(n-1) * a(n). - Michael Somos, Jun 22 2002
a(n) = 2^(n-1)/n * A110501(n). - Don Knuth, Jan 16 2007
a(n+1) = Sum_{k = 0..n} A094665(n, k). - Philippe Deléham, Jun 11 2004
O.g.f.: A(x) = x/(1-x/(1-3*x/(1-6*x/(1-10*x/(1-15*x/(... -n*(n+1)/2*x/(1 - ...))))))) (continued fraction). - Paul D. Hanna, Oct 07 2005
sqrt(2) tan( x/sqrt(2)) = Sum_(n>=0) (x^(2n+1)/(2n+1)!) a_n. - Dominique Foata and Guo-Niu Han, Oct 24 2008
Basic hypergeometric generating function: Sum_{n>=0} Product {k = 1..n} (1-exp(-2*k*t))/Product {k = 1..n} (1+exp(-2*k*t)) = 1 + t + 4*t^2/2! + 34*t^3/3! + 496*t^4/4! + ... [Andrews et al., Theorem 4]. For other sequences with generating functions of a similar type see A000364, A000464, A002439, A079144 and A158690. - Peter Bala, Mar 24 2009
E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(k*x) = Sum_{n>=0} a(n)*x^n/n!. - Paul D. Hanna, May 11 2010
a(n) = (-1)^(n+1)*sum(j!*stirling2(2*n+1,j)*2^(n+1-j)*(-1)^(j),j,1,2*n+1), n>=0. - Vladimir Kruchinin, Aug 23 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; where M = the infinite square production matrix:
1, 3, 0, 0, 0, 0, 0, ...
1, 3, 6, 0, 0, 0, 0, ...
1, 3, 6, 10, 0, 0, 0, ...
1, 3, 6, 10, 15, 0, 0, ... (End)
E.g.f. A(x) satisfies differential equation A''(x)=exp(A(x)). - Vladimir Kruchinin, Nov 18 2011
E.g.f.: For E(x)=sqrt(2)* tan( x/sqrt(2))=x/G(0); G(k)= 4*k + 1 - x^2/(8*k + 6 - x^2/G(k+1)); (from continued fraction Lambert's, 2-step). - Sergei N. Gladkovskii, Jan 14 2012
a(n) = (-1)^n*2^(n+1)*Li_{1-2*n}(-1). (See also the Mathematica prog. by Vladimir Reshetnikov.) - Peter Luschny, Jun 28 2012
G.f.: 1/G(0) where G(k) = 1 - x*( 4*k^2 + 4*k + 1 ) - x^2*(k+1)^2*( 4*k^2 + 8*k + 3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 14 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*(k+2)/2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: (1/G(0))/sqrt(x) - 1/sqrt(x), where G(k) = 1 - sqrt(x)*(2*k+1)/(1 + sqrt(x)*(2*k+1)/(1 + sqrt(x)*(k+1)/(1 - sqrt(x)*(k+1)/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 07 2013
log(2) - 1/1 + 1/2 - 1/3 + ... + (-1)^n / n = (-1)^n / 2 * (1/n - 1 / (2*n^2) + 1 / (2*n^2)^2 - 4 / (2*n^2)^3 + ... + (-1)^k * a(k) / (2*n^2)^k + ...) asymptotic expansion. - Michael Somos, Sep 07 2013
G.f.: T(0), where T(k) = 1-x*(k+1)*(k+2)/(x*(k+1)*(k+2)-2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) ~ 2^(3*n+2) * n^(2*n-1/2) / (exp(2*n) * Pi^(2*n-1/2)). - Vaclav Kotesovec, Nov 03 2014
From Peter Bala, Sep 10 2015: (Start)
The e.g.f. A(x) = sqrt(2)*tan(x/sqrt(2)) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 0, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0,1,0,1,0,4,0,34,0,496,...].
Note that the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence [1,1,1,2,5,16,61,272,...] = A000111. (End)
a(n) = polygamma(2*n-1, 1/2)*2^(2-n)/Pi^(2*n). - Vladimir Reshetnikov, Oct 18 2015
E.g.f.: sqrt(2)*tan(x/sqrt(2)) = Sum_{n>0} a(n) * x^(2*n-1) / (2*n-1)!. - Michael Somos, Mar 05 2017
From Peter Bala, May 05 2017: (Start)
Let B(x) = A(x)/x = 1 + x + 4*x^2 + 34*x^3 + ... denote the shifted o.g.f. Then B(x) = 1/(1 + 2*x - 3*x/(1 - x/(1 + 2*x - 10*x/(1 - 6*x/(1 + 2*x - 21*x/(1 - 15*x/(1 + 2*x - 36*x/(1 - 28*x/(1 + 2*x - ...))))))))), where the coefficient sequence [3, 1, 10, 6, 21, 15, 36, 28, ...] in the partial numerators of the continued fraction is obtained by swapping adjacent triangular numbers. Cf. A079144.
It follows (by means of an equivalence transformation) that the second binomial transform of B(x), with g.f. equal to 1/(1 - 2*x)*B(x/(1 - 2*x)), has the S-fraction representation 1/(1 - 3*x/(1 - x/(1 - 10*x/(1 - 6*x/(1 - 21*x/(1 - 15*x/(1 - 36*x/(1 - 28*x/(1 - ...))))))))). Compare with the S-fraction representation of the g.f. A(x) given above by Hanna, dated Oct 07 2005. (End)
The computation can be based on the triangular numbers, a(n) = T(n, n) where T(n, k) = A000217(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, and T(n, 0) = 1, T(n, n) = T(n, k-1) if k > 0. This is equivalent to Paul D. Hanna's continued fraction 2005. - Peter Luschny, Sep 30 2023

Extensions

Additional comments from Michael Somos, Jun 25 2002

A005799 Generalized Euler numbers of type 2^n.

Original entry on oeis.org

1, 1, 2, 10, 104, 1816, 47312, 1714000, 82285184, 5052370816, 386051862272, 35917232669440, 3996998043812864, 524203898507631616, 80011968856686405632, 14061403972845412526080, 2818858067801804443910144
Offset: 0

Views

Author

Keywords

Comments

Also, a(n) equals the number of alternating permutations (p(1),...,p(2n)) of the multiset {1,1,2,2,...,n,n} satisfying p(1) <= p(2) > p(3) <= p(4) > p(5) <= ... <= p(2n). Hence, A275801(n) <= a(n) <= A275829(n). - Max Alekseyev, Aug 10 2016
This is the BinomialMean transform of A000364 (see A075271 for definition of transform). - John W. Layman, Dec 04 2002
This sequence appears to be middle column in Poupard's triangle A008301.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Right edge of triangle A210108.

Programs

  • Maple
    T := proc(n, k) option remember;
    if n < 0 or k < 0 then 0
    elif n = 0 then euler(k, 1)
    else T(n-1, k+1) - T(n-1, k) fi end:
    a := n -> (-2)^n*T(n, n); seq(a(n), n=0..16); # Peter Luschny, Aug 23 2017
  • Mathematica
    a[n_] := Sum[Binomial[n, i]Abs[EulerE[2i]], {i, 0, n}]/2^n

Formula

a(n) = (1/2^n) * Sum_{i=0..n} binomial(n, i) * A000364(i).
From Sergei N. Gladkovskii, Dec 27 2012, Oct 11 2013, Oct 27 2013, Jan 08 2014: (Start) Continued fractions:
G.f.: A(x) = 1/G(0) where G(k) = 1 - x*(k+1)*(2*k+1)/(1 - x*(k+1)*(2*k+1)/G(k+1)).
G.f.: Q(0)/(1-x), where Q(k) = 1 - x^2*(k+1)^2*(2*k+1)^2/(x^2*(k+1)^2*(2*k+1)^2 - (4*x*k^2 + 2*x*k + x - 1)*( 4*x*k^2 + 10*x*k + 7*x - 1)/Q(k+1)).
G.f.: R(0), where R(k) = 1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/(1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/R(k+1)))).
G.f.: 2/(x*Q(0)), where Q(k) = 2/x - 1 - (2*k+1)^2/(1 - (2*k+2)^2/Q(k+1)). (End)
a(n) ~ 2^(3*n+3) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, May 30 2015
a(n) = 2^n * Sum_{k=0..n} (-1)^k*binomial(n, k)*euler(n+k, 1). - Peter Luschny, Aug 23 2017
From Peter Bala, Dec 21 2019: (Start)
O.g.f. as a continued fraction: 1/(1 - x/(1 - x/(1 - 6*x/(1 - 6*x/(1 - 15*x/(1 - 15*x/(1 - ... - n*(2*n-1)*x/(1 - n*(2*n-1)*x/(1 - ...))))))))) - apply Bala, Proposition 3, with a = 0, b = 1 and replace x with x/2.
Conjectures:
E.g.f. as a continued fraction: 2/(2 - (1-exp(-4*t))/(2 - (1-exp(-8*t))/(2 - (1-exp(-12*t))/(2 - ... )))) = 1 + t + 2*t^2/2! + 10*t^3/3! + 104*t^4/4! + ....
Cf. A000657. [added April 18 2024: for a proof of this conjecture see Fu et al., Section 4.3.]
a(n) = (-2)^(n+1)*Sum_{k = 0..floor((n-1)/2)} binomial(n,2*k+1)*(2^(2*n-2*k) - 1)*Bernoulli(2*n-2*k)/(2*n-2*k) for n >= 1. (End)

Extensions

Edited by Dean Hickerson, Dec 10 2002

A125054 Central terms of triangle A125053.

Original entry on oeis.org

1, 3, 21, 327, 9129, 396363, 24615741, 2068052367, 225742096209, 31048132997523, 5252064083753061, 1071525520294178007, 259439870666594250489, 73542221109962636293083, 24125551094579137082039181, 9068240688454120376775401247, 3871645204706420218816959159969
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2006

Keywords

Comments

Triangle A125053 is a variant of triangle A008301 (enumeration of binary trees) such that the leftmost column is the secant numbers (A000364).
Right edge of triangle A210108.
Apparently all terms (except the initial 1) have 3-valuation 1. - F. Chapoton, Aug 02 2021

Crossrefs

Programs

  • Mathematica
    b[n_]:=n!*SeriesCoefficient[Tan[x],{x,0,n}]; Table[Sum[Binomial[n,k]*b[2*k+1],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 30 2015 *)

Formula

Binomial transform of A000182 (e.g.f. tan(x)).
a(n) = Sum_{k=0..n} A130847(n,k)*2^k. - Philippe Deléham, Jul 22 2007
G.f.: 1/(1-sqrt(x))/Q(0), where Q(k)= 1 + sqrt(x) - x*(2*k+1)*(2*k+2)/(1 - sqrt(x) - x*(2*k+2)*(2*k+3)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 27 2013
G.f.: Q(0)/(1-3*x), where Q(k) = 1 - 4*x^2*(2*k+1)*(2*k+3)*(k+1)^2/( 4*x^2*(2*k+1)*(2*k+3)*(k+1)^2 - (1 - 8*x*k^2 - 8*x*k -3*x)*(1 - 8*x*k^2 - 24*x*k -19*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2013
G.f.: Q(0)/(1-1*x), where Q(k) = 1 - (2*k+1)*(2*k+2)*x/(x*(2*k+1)*(2*k+2) - (1-x)/(1 - (2*k+2)*(2*k+3)*x/(x*(2*k+2)*(2*k+3) - (1-x)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013
a(n) ~ 2^(4*n+5) * n^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, May 30 2015
From Peter Bala, May 11 2017: (Start)
O.g.f. as an S-fraction: A(x) = 1/(1 - 3*x/(1 - 4*x/(1 - 15*x/(1 - 16*x/(1 - 35*x/(1 - 36*x/(1 - ...))))))), where the unsigned coefficients in the partial numerators [3, 4, 15, 16, 35, 36, ...] come in pairs of the form 4*n^2 - 1, 4*n^2 for n = 1,2,....
A(x) = 1/(1 + 3*x - 6*x/(1 - 2*x/(1 + 3*x - 20*x/(1 - 12*x/(1 + 3*x - 42*x/(1 - 30*x/(1 + 3*x - ...))))))), , where the unsigned coefficients in the partial numerators [6, 2, 20, 12, 42, 30, ...] are obtained from the sequence [2, 6, 12, 20, ..., n*(n + 1), ...] by swapping adjacent terms. (End)

A107652 Triangle of numbers arising in enumeration of binary trees.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 10, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 34, 68, 94, 104, 94, 68, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 496, 992, 1420, 1712, 1816, 1712, 1420, 992, 496, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Essentially the same triangle as in A008301, but with more zeros.

Crossrefs

Cf. A008301. Leading diagonal and row sums = (essentially) A107652.

A125055 Diagonal of symmetric triangle A125053 located immediately below the central terms (A125054).

Original entry on oeis.org

1, 15, 285, 8475, 378105, 23823015, 2018820885, 221605991475, 30596648805105, 5189967817758015, 1061021392126671885, 257296819626005894475, 73023341368629447792105, 23978466652359211809453015
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2006

Keywords

Comments

Triangle A125053 is a variant of triangle A008301 (enumeration of binary trees) such that the leftmost column gives the secant numbers (A000364).

Crossrefs

Formula

a(n) = A125054(n+1) - 2*A125054(n). - Philippe Deléham, Jul 22 2007
Showing 1-9 of 9 results.