cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A186810 Partial sums of A009940.

Original entry on oeis.org

1, 1, 0, -4, -19, -75, -260, -464, 5745, 118145, 1638416, 20803836, 258490285, 3203144581, 39595146396, 481418955200, 5547932810945, 54569481140961, 257079620051200, -8335537038105380, -407961130194651699
Offset: 0

Views

Author

Jonathan Vos Post, Feb 27 2011

Keywords

Comments

Partial sums of row sums of triangle of coefficients of Laguerre polynomials L_n(x).
Through a(46) the only number whose absolute value is a prime is a(4) = -19.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!*LaguerreL[k,1], {k,0,n}], {n,0,50}] (* G. C. Greubel, Feb 05 2018 *)

Formula

a(n) = Sum_{k=0..n} k!*LaguerreL(k,1). - G. C. Greubel, Feb 05 2018

A021009 Triangle of coefficients of Laguerre polynomials n!*L_n(x) (rising powers of x).

Original entry on oeis.org

1, 1, -1, 2, -4, 1, 6, -18, 9, -1, 24, -96, 72, -16, 1, 120, -600, 600, -200, 25, -1, 720, -4320, 5400, -2400, 450, -36, 1, 5040, -35280, 52920, -29400, 7350, -882, 49, -1, 40320, -322560, 564480, -376320, 117600, -18816, 1568, -64, 1, 362880, -3265920
Offset: 0

Views

Author

Keywords

Comments

In absolute values, this sequence also gives the lower triangular readout of the exponential of a matrix whose entry {j+1,j} equals (j-1)^2 (and all other entries are zero). - Joseph Biberstine (jrbibers(AT)indiana.edu), May 26 2006
A partial permutation on a set X is a bijection between two subsets of X. |T(n,n-k)| equals the numbers of partial permutations of an n-set having domain cardinality equal to k. Let E denote the operator D*x*D, where D is the derivative operator d/dx. Then E^n = Sum_{k = 0..n} |T(n,k)|*x^k*D^(n+k). - Peter Bala, Oct 28 2008
The unsigned triangle is the generalized Riordan array (exp(x), x) with respect to the sequence n!^2 as defined by Wang and Wang (the generalized Riordan array (exp(x), x) with respect to the sequence n! is Pascal's triangle A007318, and with respect to the sequence n!*(n+1)! is A105278). - Peter Bala, Aug 15 2013
The unsigned triangle appears on page 83 of Ser (1933). - N. J. A. Sloane, Jan 16 2020

Examples

			The triangle a(n,m) starts:
n\m   0       1      2       3      4      5    6  7  8
0:    1
1:    1      -1
2:    2      -4      1
3:    6     -18      9      -1
4:   24     -96     72     -16      1
5:  120    -600    600    -200     25     -1
6:  720   -4320   5400   -2400    450    -36    1
7: 5040  -35280  52920  -29400   7350   -882   49  -1
8:40320 -322560 564480 -376320 117600 -18816 1568 -64 1
...
From _Wolfdieter Lang_, Jan 31 2013 (Start)
Recurrence (usual one): a(4,1) = 7*(-18) - 6 - 3^2*(-4) = -96.
Recurrence (simplified version): a(4,1) = 5*(-18) - 6 = -96.
Recurrence (Sage program): |a(4,1)| = 6 + 3*18 + 4*9 = 96. (End)
Embedded recurrence (Maple program): a(4,1) = -4!*(1 + 3) = -96.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 83.

Crossrefs

Row sums give A009940, alternating row sums are A002720.
Column sequences (unsigned): A000142, A001563, A001809-A001812 for m=0..5.
Central terms: A295383.
For generators and generalizations see A132440.

Programs

  • Magma
    /* As triangle: */ [[((-1)^k)*Factorial(n)*Binomial(n, k)/Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 18 2020
  • Maple
    A021009 := proc(n,k) local S; S := proc(n,k) option remember; `if`(k = 0, 1, `if`( k > n, 0, S(n-1,k-1)/k + S(n-1,k))) end: (-1)^k*n!*S(n,k) end: seq(seq(A021009(n,k), k=0..n), n=0..8); # Peter Luschny, Jun 21 2017
    # Alternative for the unsigned case (function RiordanSquare defined in A321620):
    RiordanSquare(add(x^m, m=0..10), 10, true); # Peter Luschny, Dec 06 2018
  • Mathematica
    Flatten[ Table[ CoefficientList[ n!*LaguerreL[n, x], x], {n, 0, 9}]] (* Jean-François Alcover, Dec 13 2011 *)
  • PARI
    p(n) = denominator(bestapprPade(Ser(vector(2*n, k, (k-1)!))));
    concat(1, concat(vector(9, n, Vec(-p(n)))))  \\ Gheorghe Coserea, Dec 01 2016
    
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( sum(i=0, n, binomial(n, n-i) * (-x)^i / i!), k))}; /* Michael Somos, Dec 01 2016 */
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n)); \\ Michel Marcus, Feb 06 2021
    
  • Sage
    def A021009_triangle(dim): # computes unsigned T(n,k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(2*k+1)*M[n-1,k]+(k+1)^2*M[n-1,k+1]
        return M
    A021009_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

a(n, m) = ((-1)^m)*n!*binomial(n, m)/m! = ((-1)^m)*((n!/m!)^2)/(n-m)! if n >= m, otherwise 0.
E.g.f. for m-th column: (-x/(1-x))^m /((1-x)*m!), m >= 0.
Representation (of unsigned a(n, m)) as special values of Gauss hypergeometric function 2F1, in Maple notation: n!*(-1)^m*hypergeom([ -m, n+1 ], [ 1 ], 1)/m!. - Karol A. Penson, Oct 02 2003
Sum_{m>=0} (-1)^m*a(n, m) = A002720(n). - Philippe Deléham, Mar 10 2004
E.g.f.: (1/(1-x))*exp(x*y/(x-1)). - Vladeta Jovovic, Apr 07 2005
Sum_{n>=0, m>=0} a(n, m)*(x^n/n!^2)*y^m = exp(x)*BesselJ(0, 2*sqrt(x*y)). - Vladeta Jovovic, Apr 07 2005
Matrix square yields the identity matrix: L^2 = I. - Paul D. Hanna, Nov 22 2008
From Tom Copeland, Oct 20 2012: (Start)
Symbolically, with D=d/dx and LN(n,x)=n!L_n(x), define :Dx:^j = D^j x^j, :xD:^j = x^j D^j, and LN(.,x)^j = LN(j,x) = row polynomials of A021009.
Then some useful relations are
1) (:Dx:)^n = LN(n,-:xD:) [Rodriguez formula]
2) (xDx)^n = x^n D^n x^n = x^n LN(n,-:xD:) [See Al-Salam ref./A132440]
3) (DxD)^n = D^n x^n D^n = LN(n,-:xD:) D^n [See ref. in A132440]
4) umbral composition LN(n,LN(.,x))= x^n [See Rota ref.]
5) umbral comp. LN(n,-:Dx:) = LN(n,-LN(.,-:xD:)) = 2^n LN(n,-:xD:/2)= n! * (n-th row e.g.f.(x) of A038207 with x replaced by :xD:).
An example for 2) is the operator (xDx)^2 = (xDx)(xDx) = xD(x^2 + x^3D)= 2x^2 + 4x^3 D + x^4 D^2 = x^2 (2 + 4x D + x^2 D^2) = x^2 (2 + 4 :xD: + :xD:^2) = x^2 LN(2,-:xD:) = x^2 2! L_2(-:xD:).
An example of the umbral composition in 5) is given in A038207.
The op. xDx is related to the Euler/binomial transformation for power series/o.g.f.s. through exp(t*xDx) f(x) = f[x/(1-t*x)]/(1-t*x) and to the special Moebius/linear fractional/projective transformation z exp(-t*zDz)(1/z)f(z) = f(z/(1+t*z)).
For a general discussion of umbral calculus see the Gessel link. (End)
From Wolfdieter Lang, Jan 31 2013: (Start)
Standard recurrence derived from the three term recurrence of the orthogonal polynomials system {n!*L(n,x)}: L(n,x) = (2*n - 1 - x)*L(n-1,x) - (n-1)^2*L(n-2,x), n>=1, L(-1,x) = 0, L(0,x) = 1.
a(n,m) = (2*n-1)*a(n-1,m) - a(n-1,m-1) - (n-1)^2*a(n-2,m),
n >=1, with a(n,-1) = 0, a(0,0) = 1, a(n,m) = 0 if n < m. (compare this with Peter Luschny's program for the unsigned case |a(n,m)| = (-1)^m*a(n,m)).
Simplified recurrence (using column recurrence from explicit form for a(n,m) given above):
a(n,m) = (n+m)*a(n-1,m) - a(n-1,m-1), n >= 1, a(0,0) = 1, a(n,-1) = 0, a(n,m) = 0 if n < m. (End)
|T(n,k)| = [x^k] (-1)^n*U(-n,1,-x), where U(a,b,x) is Kummer's hypergeometric U function. - Peter Luschny, Apr 11 2015
T(n,k) = (-1)^k*n!*S(n,k) where S(n,k) is recursively defined by: "if k = 0 then 1 else if k > n then 0 else S(n-1,k-1)/k + S(n-1,k)". - Peter Luschny, Jun 21 2017
The unsigned case is the exponential Riordan square (see A321620) of the factorial numbers. - Peter Luschny, Dec 06 2018
Omitting the diagonal and signs, this array is generated by the commutator [D^n,x^n] = D^n x^n - x^n D^n = Sum_{i=0..n-1} ((n!/i!)^2/(n-i)!) x^i D^i on p. 9 of both papers by Belov-Kanel and Kontsevich. - Tom Copeland, Jan 23 2020

Extensions

Name changed and table given by Wolfdieter Lang, Nov 28 2011

A021010 Triangle of coefficients of Laguerre polynomials L_n(x) (powers of x in decreasing order).

Original entry on oeis.org

1, -1, 1, 1, -4, 2, -1, 9, -18, 6, 1, -16, 72, -96, 24, -1, 25, -200, 600, -600, 120, 1, -36, 450, -2400, 5400, -4320, 720, -1, 49, -882, 7350, -29400, 52920, -35280, 5040, 1, -64, 1568, -18816, 117600, -376320, 564480, -322560, 40320, -1, 81, -2592, 42336, -381024, 1905120, -5080320, 6531840, -3265920, 362880
Offset: 0

Views

Author

Keywords

Comments

abs(T(n,k)) = k!*binomial(n,k)^2 = number of k-matchings of the complete bipartite graph K_{n,n}. Example: abs(T(2,2))=2 because in the bipartite graph K_{2,2} with vertex sets {A,B},{A',B'} we have the 2-matchings {AA',BB'} and {AB',BA'}. Row sums of the absolute values yield A002720. - Emeric Deutsch, Dec 25 2004

Examples

			   1;
  -1,   1;
   1,  -4,   2;
  -1,   9, -18,   6;
   1, -16,  72, -96,  24;
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.

Crossrefs

Cf. A002720, A021009, A009940 (row sums).
Central terms: A295383.

Programs

  • Magma
    [[(-1)^(n-k)*Factorial(k)*Binomial(n, k)^2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
  • Maple
    T:=(n,k)->(-1)^(n-k)*k!*binomial(n,k)^2: for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
  • Mathematica
    Flatten[ Table[ Reverse[ CoefficientList[n!*LaguerreL[n, x], x]], {n, 0, 9}]] (* Jean-François Alcover, Nov 24 2011 *)
  • PARI
    LaguerreL(n,v='x) = {
      my(x='x+O('x^(n+1)), t='t);
      subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);
    };
    concat(apply(n->Vec(n!*LaguerreL(n)), [0..9])) \\ Gheorghe Coserea, Oct 26 2017
    
  • PARI
    row(n) = Vec(n!*pollaguerre(n)); \\ Michel Marcus, Feb 06 2021
    

Formula

T(n, k) = (-1)^(n-k)*k!*binomial(n, k)^2. - Emeric Deutsch, Dec 25 2004

A131758 Coefficients of numerators of rational functions whose binomial transforms give the normalized polylogarithms Li(-n,t)/n!.

Original entry on oeis.org

1, 0, 1, -1, 1, 2, 4, -14, 10, 6, -15, 83, -157, 89, 24, 56, -424, 1266, -1724, 826, 120, -185, 1887, -8038, 17642, -19593, 8287, 720, 204, -4976, 36226, -126944, 239576, -234688, 90602, 5040
Offset: 0

Views

Author

Tom Copeland, Sep 17 2007, Sep 27 2007, Sep 30 2007, Oct 01 2007, Oct 08 2007

Keywords

Comments

Coefficients may be generated from a modified Riordan array (MRA) formed from Rgf(z,t) = (t/(1+z))/(exp(-z/(1+z))-t) with each row of the array acting to generate the succeeding polynomial P(n,t) from the preceding n polynomials.
The MRA is constructed by appending an n! to the left of the n-th row of the Riordan array A129652 and removing the unit diagonal.
The MRA is partially
1;
1, 1;
2, 3, 2;
6, 13, 9, 3;
24, 73, 52, 18, 4;
120, 501, 365, 130, 30, 5;
720, 4051, 3006, 1095, 260, 45, 6;
For the MRA:
1) First column is the n!'s.
2) Second column is A000262.
Then, e.g., from the terms in the MRA,
P(0,t) = 0!*(t-1)^0 = 1 from the n=0 row,
P(1,t) = 1!*(t-1)^1 + 1*P(0,t) = t from the n=1 row,
P(2,t) = 2!*(t-1)^2 + 3*P(0,t)*(t-1)^1 + 2*P(1,t)
P(3,t) = 3!*(t-1)^3 + 13*P(0,t)*(t-1)^2 + 9*P(1,t)*(t-1)^1 + 3*P(2,t)
generating
P(0,t) = (1)
P(1,t) = (0, 1)
P(2,t) = (-1, 1, 2)
P(3,t) = (4, -14, 10, 6) = 4 + -14 t + 10 t^2 + 6 t^3
P(4,t) = (-15, 83, -157, 89, 24)
P(5,t) = (56, -424, 1266, -1724, 826, 120)
P(6,t) = (-185, 1887, -8038, 17642, -19593, 8287, 720)
P(7,t) = (204, -4976, 36226, -126944, 239576, -234688, 90602, 5040)
For the polynomial array:
1) The first column is A009940 = (-1)^n * n!*Lag(n,1) =(-1)^n* n!* Lag(n,-1,-1).
2) Row sums are n!.
3) Highest order coefficient is n!.
4) Alternating row sum is below.
Then, with Rf(n,t) = [ t/(1-t)^(n+1) ] * P(n,t)/n!, the polylogs are given umbrally by
Li(-n,t)/n! = [ 1 + Rf(.,t) ]^n for n = 0,1,2,... so conversely
Rf(n,t) = {[ Li(-(.),t))/(.)! ]-1}^n.
Note umbrally [ Rf(.,t) ]^n = Rf(n,t) and
(1+Rf)^0 = 1^0 * [ Rf(.,t) ]^0 = Rf(0,t) = t/(1-t) = Li(0,t).
More generally, Newton interpolation holds and for Re(s) >= 0,
Li(-s,t)/(s)! = [ 1 + Rf(.,t) ]^s, when convergent in t.
Alternatively, the Rf's may be formed through differentiation of their o.g.f., the Rgf(z,t) above, which may also be written as
Rgf(z,t) = Sum_{k>=1} [ t^k ] * exp[ k * z/(z+1) ]/(z+1)
= Sum_{n>=0} [ (-z)^n ] * Sum_{k>=1} [ (t^k * Lag(n,k) ]
= Sum_{k>=0} [ (-z)^k ] * Lag(k,Li(-(.),t))
= Sum_{k>=0} [ z^k ] * {[ Li(-(.),t))/(.)! ]-1}^k
= exp[ Li(-(.),t)*z/(1+z) ]/(1+z),
and operationally as
Rgf(z,t) = {Sum_{k>=0} (-z)^k * Lag(k,tD)} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * Lag(k,T(.,:tD:))} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * Sum_{j>=0} Lag(k,j) (tD)^j /j!} [ x/(1-x) ]
where D is w.r.t. x at 0
= {Sum_{k>=0} (-z)^k*Sum_{j=0..k} (-1)^j*[ 1-Lag(k,.) ]^j*(:tD:)^j/ j!} [ t/(1-t) ]
= {Sum_{k>=0} (-z)^k * exp[ -[ 1-Lag(k,.) ]* :tD: ]} [ t/(1-t) ]
where (:tD:)^n = t^n * D^n, D is the derivative w.r.t. t unless otherwise stated, Lag(n,x) is a Laguerre polynomial and T(n,t) is a Touchard / Bell / exponential polynomial.
Hence [ t/(1-t)^(n+1) ] * P(n,t)/n! = Rf(n,t)
= {Sum_{k=0..n} (-1)^n-k)*[ C(m,k)/k! ]*(tD)^k} [ t/(1-t) ]
= {Sum_{k=0..n} (-1)^(n-k)*[ C(m,k)/k! ]*Sum_{j=0..k} S2(k,j)*(:tD:)^j} [ t/(1-t) ]
= {Sum_{k>=0} (-1)^(n-k) * Lag(n,k) * (tD)^k/k!} [ x/(1-x) ] where D is w.r.t. x at 0
= {Sum_{k=0..n} (-1)^(n-k)* [ 1-Lag(n,.) ]^k *(:tD:)^k/k!}[ t/(1-t) ],
where S2(k,j) are the Stirling numbers of the second kind and C(m,k), binomial coefficients.
The P(n,t) are related to the Laguerre polynomials through
P(n,t) = (-1)^n n! [ (1-t)^(n+1)} ] Sum_{k>=0} [ (t^k*Lag(n,k+1) ] = Sum_{m=0..n} a(n,m) * t^m
where a(n,m) = (-1)^n n! [ Sum_{k=0..m} (-1)^k * C(n+1,k) *Lag(n,m-k+1) ] .
Conjecture for the polynomial array:
The greatest common divisor of the coefficients of each polynomial is given by A060872(n)/n or, equivalently, by A038548(n).
Some e.g.f.'s for the Rf's are
exp[ -Rf(.,t)*z ] = exp{[ 1-Li(-(.),t)/(.)! ]*z}
= Sum_{n>=0} { (z^n/n!) * Sum_{k>=1} [ t^k * Lag(n,k) ] }
= Sum_{k>=1} { t^k * (e^z) * J_0[ 2*sqrt(k*z)}
= Sum_{n>=0} {(-1)^n*(z^n/n!)*(z^/j!)*Lag(n,-1)*Sum_{k>=1} [ t^k*k^n*(k+1)^j ]}
where J_0(x) is the zeroth Bessel function of the first kind.
The expressions (:tD:)^j}[ t/(1-t) ] and the Laguerre polynomials are intimately connected to Lah numbers and rook polynomials.
Some interesting relations to physics, probability and number theory are, for abs(t) < 1 and abs(z) < 1 at least,
BE(t,z) = Sum_{k>=0} [ (-z)^k ] *[ 1 + Rf(.,t) ]^k
= Rgf(-z/(1+z),t)/(1+z) = t/{exp(z)-t}, a Bose-Einstein distribution,
FD(t,z) = Sum_{k>=0} [ (-z)^k+1 ] *[ 1 + Rf(.,-t) ]^k
= -Rgf(-z/(1+z),-t)/(1+z) = t/{exp(z)+t}, a Fermi-Dirac distribution
and as t tends to 1 from below, z*BE(t,z) tends to the Bernoulli e.g.f., which is related by the Mellin transform to (s-1)!*Zeta(s). Taking Mellin transforms of BE and FD w.r.t. z gives the polylogarithm over different domains.
Since BE(2,z) is essentially the e.g.f. for the ordered Bell numbers, it follows that umbrally
n! * Lag(n,OB(.)) = P(n,2) and
n! * Lag(n,P(.,2)) = OB(n)
where OB(n) are the signed ordered Bell/Fubini numbers A000670.
I.e., P(n,2) and the ordered Bell numbers form a reciprocal Laguerre combinatorial transform pair,
or, equivalently, P(n,2)/n! and OB(n)/n! form a reciprocal finite difference pair, so
P(n,2)/n! = (-1)^(n+1) * Rf(n,2) = -{1-[ Li(-(.),2))/(.)! ]}^n and
OB(n) = -Li(-n,2).
Note that n!*Lag(n,(.)!*Lag(.,x)) = x^n is a true identity for general Laguerre polynomials Lag(n,x,a) with a = -1,0,1,..., so one could look at analogous higher-order reciprocal pairs containing OB(n).
In addition, a mixed-order iterated Laguerre transform gives
n!*Lag{n,(.)!*Lag[ .,P(.,2),0 ],-1}
= P(n,2) - n*P(n-1,2)
= n!*Lag[ n,OB(.),-1 ] = A084358(n), lists of sets of lists.
For Eulerian polynomials, E(n,t), given by A173018 (A008292),
E(n,t)/n! = [ 1-t+P(.,t)/(.)! ]^n
P(n,t)/n! = [ E(.,t)/(.)!-(1-t) ]^n, or equivalently
[ E(.,t)/(1-t) ]^n = n!*Lag[ n,-P(.,t)/(1-t) ]
[ -P(.,t)/(1-t) ]^n = n!*Lag[ n,E(.,t)/(1-t) ], a Laguerre transform pair.
Then from known relations for the Eulerian polynomials, the alternating row sum of the polynomial array is
P(n,-1) = (-2)^(n+1) * n! * Lag[ n,c(.)*Zeta(-(.)) ]
where c(n) = [ 2^(n+1) - 1 ] and Zeta is the Riemann zeta function. And so
Zeta(-n) = n! * Lag[ n,-P(.,-1)/2 ] / [ 2 - 2^(n+2) ],
which also holds, with the summation limit of Lag extended to infinity, for n = s, any complex number with Re(s) > 0.
Then from standard formulas for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t) and the binomial C(x,y) = x!/[ (x-y)!*y! ]
2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n)
= 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1)
= [ -(1+EN(.)) ]^n
= 2^n * GN(n+1)/(n+1)
= 2^n * EP(n,0)
= (-1)^n * E(n,-1)
= (-2)^n * n! * Lag[ n,-P(.,-1)/2 ]
= (-2)^n * n! * C{T[ .,P(.,-1)/2 ] + n, n}
= an integer = Q(n)
These are related to the zag numbers A000182 by Zag(n) = abs[ Q(2*n-1) ]. And, abs[ Q(2*n-1) ] / 2^q(n) = Zag(n) / 2^q(n) = A002425(n) with q(n) = A101921.
These may be generalized by letting n = s, a complex number, (or interpolating) to obtain generalized Laguerre functions or confluent hypergeometric functions of the first kind, M(a,b,x), or second kind, U(a,b,x), whose arguments are P(.,-1)/2, such as
E(s,-1)/[ 2^s*s! ] = -2*Li(-s,-1)/s! = (2-2^(s+2)) * Zeta(-s)/s!
= C{T[ .,P(.,-1)/2 ] + s, s} = Lag[ s,-P(.,-1)/2 ] = M[ -s,1,-P(.,-1)/2 ] or,
GN(s+1)/(s+1)! = EP(s,0)/s! = C{-T[ .,P(.,-1)/2 ]-1, n} = U[ -s,1,-P(.,-1)/2 ]/(s)!
And even more generally
E(s,t)/(1-t)^s = [ (1-t)/t ] Li(-s,t) = s!*Lag[ s,-P(.,t)/(1-t) ]
= s! * C{T[ .,P(.,t)/(1-t) ] + s, s} = s! * M[ -s,1,-P(.,t)/(1-t) ] .
The Laguerre polynomial expressions are fundamental as they can be interpolated to form general M[ a,b,-P(.,t)/(1-t) ] or U[ a,b,-P(.,t)/(1-t) ] which can then be related either directly or by binomial transforms to many important Sheffer sequences, not to mention group theory and Riemann surfaces.
Note for frequently occurring expressions above: The Laguerre polynomials of order -1 and 0 are intimately connected to Lah numbers and rook polynomials and (tD)^n [t/(1-t)] = T(n,:tD:) [t/(1-t)] generates an Eulerian polynomial in the numerator of a rational function. - Tom Copeland, Sep 09 2008
The deformed Todd operator on p. 12 of Gunnells and Villegas is Td(a,D) = -D / (a*exp(-D) - 1) = [-D/(1-D)] * Rgf(D/(1-D), 1/a) = -D * BE(1/a,-D) = D * FD(-1/a,-D), where BE and FD are the Bose-Einstein and Fermi-Dirac distributions given above. See also connections among the Eulerian polynomials, Ehrhart polynomials, and the Todd operator in Beck and Robins, especially pages 31 and 37. - Tom Copeland, Jun 20 2017

References

  • M. Beck and S. Robins, Computing the Continuous Discretely, illustrated by D. Austin, Springer, 2007.

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := (-1)^n *n!*Sum[(-1)^k*Binomial[n+1, k]*LaguerreL[n, m-k+1], {k, 0, m}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)

Formula

a(n,m) = (-1)^n*n!*Sum_{k=0..m} (-1)^k*C(n+1,k)*Lag(n, m-k+1).

Extensions

A173018 given as reference for Eulerian polynomials and typo in a Laguerre function corrected by Tom Copeland, Oct 02 2014

A288268 Expansion of e.g.f.: exp(Sum_{k>=1} (k-1)*x^k/k).

Original entry on oeis.org

1, 0, 1, 4, 21, 136, 1045, 9276, 93289, 1047376, 12975561, 175721140, 2581284541, 40864292184, 693347907421, 12548540320876, 241253367679185, 4909234733857696, 105394372192969489, 2380337795595885156, 56410454014314490981, 1399496554158060983080
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2017

Keywords

Crossrefs

Programs

  • Magma
    l:= func< n, a, b | Evaluate(LaguerrePolynomial(n, a), b) >;
    [1,0]cat[(Factorial(n)/(n-1))*(2*l(n-1,0,-1) - l(n,0,-1)): n in [2..30]]; // G. C. Greubel, Mar 10 2021
    
  • Maple
    a := proc(n) option remember; if n < 3 then [1, 0, 1][n+1] else
    -(n^2 - 4*n + 3)*a(n - 2) + (2*n - 2)*a(n - 1) fi end:
    seq(a(n), n = 0..21); # Peter Luschny, Feb 20 2022
  • Mathematica
    Table[If[n<2, 1-n, (n!/(n-1))*(2*LaguerreL[n-1, -1] - LaguerreL[n, -1])], {n, 0, 30}] (* G. C. Greubel, Mar 10 2021 *)
  • PARI
    {a(n) = n!*polcoeff(exp(sum(k=1, n, (k-1)*x^k/k)+x*O(x^n)), n)}
    
  • Sage
    [1-n if n<2 else (factorial(n)/(n-1))*(2*gen_laguerre(n-1,0,-1) - gen_laguerre(n,0,-1)) for n in (0..30)] # G. C. Greubel, Mar 10 2021

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} (k-1)*a(n-k)/(n-k)! for n > 0.
E.g.f.: (1 - x) * exp(x/(1 - x)). - Ilya Gutkovskiy, Jul 27 2020
a(n) = (n!/(n-1))*( 2*LaguerreL(n-1, -1) - LaguerreL(n, -1) ) with a(0) = 1, a(1) = 0. - G. C. Greubel, Mar 10 2021
a(n) ~ n^(n - 3/4) * exp(-1/2 + 2*sqrt(n) - n) / sqrt(2) * (1 - 65/(48*sqrt(n))). - Vaclav Kotesovec, Mar 10 2021, minor term corrected Dec 01 2021
From Peter Luschny, Feb 20 2022: (Start)
a(n) = n! * Sum_{k=0..n} (-1)^k * LaguerreL(n-k, k-1, -1).
a(n) = 2*(n - 1)*a(n - 1) - (n^2 - 4*n + 3)*a(n - 2) for n >= 3. (End)
From Peter Bala, May 26 2023: (Start)
a(n) = Sum_{k = 0..n} |Stirling1(n,k)|*A000296(k) (follows from the fundamental theorem of Riordan arrays).
Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is purely periodic with the period dividing k. For example, modulo 7 we obtain the purely periodic sequence [1, 0, 1, 4, 0, 3, 2, 1, 0, 1, 4, 0, 3, 2, ...] of period 7. Cf. A047974. (End)
For n>1, a(n) = (2*n*A002720(n-1) - A002720(n))/(n-1). - Vaclav Kotesovec, May 27 2023

A295382 Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x).

Original entry on oeis.org

1, -1, -2, -2, 8, 88, 592, 3344, 14464, 2944, -1121536, -21603584, -317969408, -4202380288, -51322677248, -562045749248, -4751724347392, -3419742961664, 1260396818661376, 45221885372727296, 1218206507254153216, 29421299633821057024, 669044215287581769728, 14528992234596624498688
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2017

Keywords

Crossrefs

Column k=2 of A295381.

Programs

  • Magma
    [Factorial(n)*(&+[(-1)^k*Binomial(n,k)*2^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
  • Maple
    a:=series(exp(-2*x/(1-x))/(1-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[-2 x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! LaguerreL[n, 2], {n, 0, 23}]
    Table[n! Hypergeometric1F1[-n, 1, 2], {n, 0, 23}]
    Table[n! Sum[(-1)^k Binomial[n, k] 2^k/k!, {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(-2*x/(1-x))/(1-x))) \\ G. C. Greubel, Feb 06 2018
    

Formula

E.g.f.: exp(-2*x/(1 - x))/(1 - x).
a(n) = n!*Laguerre(n,2).
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k/k!.
a(n) = n!*A160623(n)/A160624(n).
a(n) = Sum_{k=0..n} (-2)^(n-k)*k!*binomial(n,k)^2. - Ridouane Oudra, Jul 08 2025

A101800 a(n)= abs(det[A000166(i+j+1)]), i,j=0...n, is the absolute value of the Hankel determinant of order n+1 of the derangements numbers, cf. A000166.

Original entry on oeis.org

0, 1, 16, 2160, 4644864, 220962816000, 126311423016960000, 97655159393202733056000000, 2873961139404949958783139840000000000, 5118723340142578530942677236206891171840000000000
Offset: 0

Views

Author

Karol A. Penson, Dec 17 2004

Keywords

Comments

a(n) = abs(product( (p!)^2,p=0..n )*(n+1)!*LaguerreL(n+1,0,1)), n=0,1..., where LaguerreL(n,lambda,x) are generalized Laguerre polynomial.

Crossrefs

Programs

  • Mathematica
    a[n_] := Table[Subfactorial[i+j+1], {i, 0, n}, {j, 0, n}] // Det // Abs;
    Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Aug 18 2024 *)

Formula

a(n) = abs(A055209(n)*A009940(n+1)). [corrected by Vaclav Kotesovec, Feb 25 2019]

A160621 Numerator of Laguerre(n, 1).

Original entry on oeis.org

1, 0, -1, -2, -5, -7, -37, -17, 887, 1405, 168919, 958271, 3086837, 122693929, 559876951, 15779421743, 337767590383, 1531923385313, 11912361112367, -6819537030283, -21032925955607701, -313699426574980519, -16703816669710968821, -212752402370938916881
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			1, 0, -1/2, -2/3, -5/8, -7/15, -37/144, -17/420, 887/5760, 1405/4536, 168919/403200, 958271/1995840, ... = A160621/A160622.
		

Crossrefs

For denominators see A160622.
Cf. A009940.

Programs

  • Magma
    [Numerator((&+[Binomial(n,k)*((-1)^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Mathematica
    Numerator/@LaguerreL[Range[0,30],1]  (* Harvey P. Dale, May 01 2011 *)
  • PARI
    for(n=0,30, print1(numerator(sum(k=0,n, binomial(n,k)*((-1)^k/k!))), ", ")) \\ G. C. Greubel, May 06 2018
    

Formula

Numerators of coefficients in expansion of exp(-x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Aug 29 2018

A160622 Denominator of Laguerre(n, 1).

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 144, 420, 5760, 4536, 403200, 1995840, 6220800, 259459200, 1341204480, 46702656000, 1394852659200, 11115232128000, 376610217984000, 96543730483200, 128047474114560000, 1277273554292736000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			1, 0, -1/2, -2/3, -5/8, -7/15, -37/144, -17/420, 887/5760, 1405/4536, 168919/403200, 958271/1995840, ... = A160621/A160622.
		

Crossrefs

For numerators see A160621.
Cf. A009940.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*((-1)^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Mathematica
    Denominator[Table[LaguerreL[n,1], {n, 0, 50}]] (* G. C. Greubel, May 06 2018 *)
  • PARI
    for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*((-1)^k/k!))), ", ")) \\ G. C. Greubel, May 06 2018
    

Formula

Denominators of coefficients in expansion of exp(-x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Aug 29 2018

A295381 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x/(1 - x))/(1 - x).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, -1, -1, 6, 1, -2, -2, -4, 24, 1, -3, -1, -2, -15, 120, 1, -4, 2, 6, 8, -56, 720, 1, -5, 7, 14, 33, 88, -185, 5040, 1, -6, 14, 16, 24, 102, 592, -204, 40320, 1, -7, 23, 6, -31, -104, -9, 3344, 6209, 362880, 1, -8, 34, -22, -120, -380, -1328, -3762, 14464, 112400, 3628800
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2017

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 4*k + 2)*x^2/2! + (-k^3 + 9*k^2 - 18*k + 6)*x^3/3! + (k^4 - 16*k^3 + 72*k^2 - 96*k + 24)*x^4/4! + ...
Square array begins:
    1,   1,   1,    1,    1,    1, ...
    1,   0,  -1,   -2    -3,   -4, ...
    2,  -1,  -2,   -1,    2,    7, ...
    6,  -4,  -2,    6,   14,   16, ...
   24, -15,   8,   33,   24,  -31, ...
  120, -56,  88,  102, -104, -380, ...
		

Crossrefs

Columns k=0..2 give A000142, A009940, A295382.
Main diagonal gives A277423.
Cf. A289192.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-k x/(1 - x)]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, n! LaguerreL[n, k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, n! Hypergeometric1F1[-n, 1, k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(-k*x/(1 - x))/(1 - x).
A(n,k) = n!*Laguerre(n,k).
Showing 1-10 of 28 results. Next