cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248313 Egyptian fraction representation of sqrt(90) (A010541) using a greedy function.

Original entry on oeis.org

9, 3, 7, 94, 237731, 136665970245, 67743329578333536936775, 10460967934729507088324847821919729395581628411, 306082921822884432486900888604912785778982912341380971382664469281664438592792428646830982341
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 90]]

A024036 a(n) = 4^n - 1.

Original entry on oeis.org

0, 3, 15, 63, 255, 1023, 4095, 16383, 65535, 262143, 1048575, 4194303, 16777215, 67108863, 268435455, 1073741823, 4294967295, 17179869183, 68719476735, 274877906943, 1099511627775, 4398046511103, 17592186044415, 70368744177663, 281474976710655
Offset: 0

Views

Author

Keywords

Comments

This sequence is the normalized length per iteration of the space-filling Peano-Hilbert curve. The curve remains in a square, but its length increases without bound. The length of the curve, after n iterations in a unit square, is a(n)*2^(-n) where a(n) = 4*a(n-1)+3. This is the sequence of a(n) values. a(n)*(2^(-n)*2^(-n)) tends to 1, the area of the square where the curve is generated, as n increases. The ratio between the number of segments of the curve at the n-th iteration (A015521) and a(n) tends to 4/5 as n increases. - Giorgio Balzarotti, Mar 16 2006
Numbers whose base-4 representation is 333....3. - Zerinvary Lajos, Feb 03 2007
From Eric Desbiaux, Jun 28 2009: (Start)
It appears that for a given area, a square n^2 can be divided into n^2+1 other squares.
It's a rotation and zoom out of a Cartesian plan, which creates squares with side
= sqrt( (n^2) / (n^2+1) ) --> A010503|A010532|A010541... --> limit 1,
and diagonal sqrt(2*sqrt((n^2)/(n^2+1))) --> A010767|... --> limit A002193.
(End)
Also the total number of line segments after the n-th stage in the H tree, if 4^(n-1) H's are added at the n-th stage to the structure in which every "H" is formed by 3 line segments. A164346 (the first differences of this sequence) gives the number of line segments added at the n-th stage. - Omar E. Pol, Feb 16 2013
a(n) is the cumulative number of segment deletions in a Koch snowflake after (n+1) iterations. - Ivan N. Ianakiev, Nov 22 2013
Inverse binomial transform of A005057. - Wesley Ivan Hurt, Apr 04 2014
For n > 0, a(n) is one-third the partial sums of A002063(n-1). - J. M. Bergot, May 23 2014
Also the cyclomatic number of the n-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 18 2017

Examples

			G.f. = 3*x + 15*x^2 + 63*x^3 + 255*x^4 + 1023*x^5 + 4095*x^6 + ...
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.

Crossrefs

Programs

  • Haskell
    a024036 = (subtract 1) . a000302
    a024036_list = iterate ((+ 3) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A024036:=n->4^n-1; seq(A024036(n), n=0..30); # Wesley Ivan Hurt, Apr 04 2014
  • Mathematica
    Array[4^# - 1 &, 50, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
    (* Start from Eric W. Weisstein, Sep 19 2017 *)
    Table[4^n - 1, {n, 0, 20}]
    4^Range[0, 20] - 1
    LinearRecurrence[{5, -4}, {0, 3}, 20]
    CoefficientList[Series[3 x/(1 - 5 x + 4 x^2), {x, 0, 20}], x]
    (* End *)
  • PARI
    for(n=0, 100, print1(4^n-1, ", ")) \\ Felix Fröhlich, Jul 04 2014
  • Sage
    [gaussian_binomial(2*n,1, 2) for n in range(21)] # Zerinvary Lajos, May 28 2009
    
  • Sage
    [stirling_number2(2*n+1, 2) for n in range(21)] # Zerinvary Lajos, Nov 26 2009
    

Formula

a(n) = 3*A002450(n). - N. J. A. Sloane, Feb 19 2004
G.f.: 3*x/((-1+x)*(-1+4*x)) = 1/(-1+x) - 1/(-1+4*x). - R. J. Mathar, Nov 23 2007
E.g.f.: exp(4*x) - exp(x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A000051(n)*A000225(n). - Reinhard Zumkeller, Feb 14 2009
A079978(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2009
a(n) = A179857(A000225(n)), for n > 0; a(n) > A179857(m), for m < A000225(n). - Reinhard Zumkeller, Jul 31 2010
a(n) = 4*a(n-1) + 3, with a(0) = 0. - Vincenzo Librandi, Aug 01 2010
A000120(a(n)) = 2*n. - Reinhard Zumkeller, Feb 07 2011
a(n) = (3/2)*A020988(n). - Omar E. Pol, Mar 15 2012
a(n) = (Sum_{i=0..n} A002001(i)) - 1 = A178789(n+1) - 3. - Ivan N. Ianakiev, Nov 22 2013
a(n) = n*E(2*n-1,1)/B(2*n,1), for n > 0, where E(n,x) denotes the Euler polynomials and B(n,x) the Bernoulli polynomials. - Peter Luschny, Apr 04 2014
a(n) = A000302(n) - 1. - Sean A. Irvine, Jun 18 2019
Sum_{n>=1} 1/a(n) = A248721. - Amiram Eldar, Nov 13 2020
a(n) = A080674(n) - A002450(n). - Elmo R. Oliveira, Dec 02 2023

Extensions

More terms Wesley Ivan Hurt, Apr 04 2014

A040080 Continued fraction for sqrt(90).

Original entry on oeis.org

9, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2, 18, 2
Offset: 0

Views

Author

Keywords

Examples

			9.4868329805051379959966806... = 9 + 1/(2 + 1/(18 + 1/(2 + 1/(18 + ...)))). - _Harry J. Smith_, Jun 11 2009
		

Crossrefs

Cf. A010541 Decimal expansion. - Harry J. Smith, Jun 11 2009

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[90],300] (* Vladimir Joseph Stephan Orlovsky, Mar 10 2011 *)
    PadRight[{9},120,{18,2}] (* Harvey P. Dale, Jun 13 2017 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 32000); x=contfrac(sqrt(90)); for (n=0, 20000, write("b040080.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 11 2009
    
  • PARI
    a(n) = if (!n, 9, if (n % 2, 2, 18)); \\ Michel Marcus, Jan 03 2016

A041160 Numerators of continued fraction convergents to sqrt(90).

Original entry on oeis.org

9, 19, 351, 721, 13329, 27379, 506151, 1039681, 19220409, 39480499, 729869391, 1499219281, 27715816449, 56930852179, 1052471155671, 2161873163521, 39966188099049, 82094249361619, 1517662676608191
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[90], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
    Table[(2 + (-1)^n) ((3 - Sqrt[10])^(n + 1) + (3 + Sqrt[10])^(n + 1))/2, {n, 0, 30}] (* Bruno Berselli, Oct 30 2013 *)
    LinearRecurrence[{0,38,0,-1},{9,19,351,721},30] (* Harvey P. Dale, May 12 2018 *)

Formula

G.f.: (1 + x)*(9 + 10*x - x^2) / (1 - 38*x^2 + x^4). [Bruno Berselli, Oct 30 2013]
a(n) = (2+(-1)^n)*((3-sqrt(10))^(n+1)+(3+sqrt(10))^(n+1))/2. [Bruno Berselli, Oct 30 2013]

A171542 Decimal expansion of sqrt(27/70).

Original entry on oeis.org

6, 2, 1, 0, 5, 9, 0, 0, 3, 4, 0, 8, 1, 1, 8, 7, 9, 6, 0, 1, 6, 5, 1, 4, 1, 7, 8, 1, 6, 4, 4, 1, 8, 7, 8, 8, 1, 3, 4, 5, 7, 7, 1, 2, 3, 2, 0, 3, 9, 5, 5, 9, 8, 9, 5, 1, 5, 5, 3, 9, 6, 3, 4, 5, 9, 0, 7, 7, 7, 6, 1, 5, 9, 7, 0, 8, 7, 2, 0, 1, 8, 0, 7, 3, 3, 9, 5, 5, 6, 5, 3, 7, 1, 5, 8, 3, 6, 0, 7, 0, 4, 6, 5, 5, 9
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -1 3/2 | 5/2 1/2>.

Examples

			sqrt(27/70) = 3*sqrt(210)/70 = 0.621059003408118796016514178164...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[27/70],10,120][[1]] (* Harvey P. Dale, Apr 26 2011 *)

Formula

Showing 1-5 of 5 results.