cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A168668 a(n) = n*(2 + 5*n).

Original entry on oeis.org

0, 7, 24, 51, 88, 135, 192, 259, 336, 423, 520, 627, 744, 871, 1008, 1155, 1312, 1479, 1656, 1843, 2040, 2247, 2464, 2691, 2928, 3175, 3432, 3699, 3976, 4263, 4560, 4867, 5184, 5511, 5848, 6195, 6552, 6919, 7296, 7683, 8080, 8487, 8904, 9331, 9768, 10215, 10672
Offset: 0

Views

Author

Paul Curtz, Dec 02 2009

Keywords

Comments

Appears on the main diagonal of the following table of terms of the Hydrogen series, A169603:
0, 3, 8, 15, 24, ... A005563
0, 7, 16, 1, 40, 55, ... A061039
0, 11, 24, 39, 56, 3, 96, ... A061043
0, 15, 32, 51, 72, 95, 120, ... A061047
0, 19, 40, 63, 88, 115, 144, 175, 208, 1, ...

Crossrefs

Programs

Formula

G.f.: x*(7 + 3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n) - a(n-1) = 10*n-3.
Second differences: a(n) - 2*a(n-1) + a(n-2) = 10 = A010692(n).
a(n) = A131242(10n+6). - Philippe Deléham, Mar 27 2013
a(n) = A000384(n) + 6*A000217(n). - Luciano Ancora, Mar 28 2015
a(n) = A000217(n) + A000217(3*n). - Bruno Berselli, Jul 01 2016
E.g.f.: x*(7 + 5*x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/4 + sqrt(5)*log(phi)/4 - 5*log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023

Extensions

Edited and extended by R. J. Mathar, Dec 05 2009

A040020 Continued fraction for sqrt(26).

Original entry on oeis.org

5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Keywords

Examples

			5.09901951359278483002822... = 5 + 1/(10 + 1/(10 + 1/(10 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010481 (decimal expansion), A041040/A041041 (convergents), A248253 (Egyptian fraction).

Programs

Formula

From Elmo R. Oliveira, Feb 06 2024: (Start)
a(n) = 10 for n >= 1.
G.f.: 5*(1+x)/(1-x).
E.g.f.: 10*exp(x) - 5.
a(n) = 5*A040000(n). (End)

A010726 Period 2: repeat (6,10).

Original entry on oeis.org

6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10
Offset: 0

Views

Author

Keywords

Comments

From Klaus Brockhaus, Dec 10 2009: (Start)
Interleaving of A010722 and A010692.
Also continued fraction expansion of 3 + 4*sqrt(15)/5.
Binomial transform of 6 followed by A122803 without initial terms 1,-2.
Inverse binomial transform of A171494. (End)

Crossrefs

Equals 2*A010703. Cf. A010722 (all 6's sequence), A010692 (all 10's sequence), A122803 (powers of -2), A171494. - Klaus Brockhaus, Dec 10 2009

Programs

Formula

a(n) = -2*(-1)^n + 8. - Paolo P. Lava, Oct 27 2006
From Klaus Brockhaus, Dec 10 2009: (Start)
a(n) = a(n-2) for n > 1; a(0) = 6, a(1) = 10.
G.f.: 2*(3+5*x)/((1-x)*(1+x)). (End)

A176537 Decimal expansion of 5 + sqrt(26).

Original entry on oeis.org

1, 0, 0, 9, 9, 0, 1, 9, 5, 1, 3, 5, 9, 2, 7, 8, 4, 8, 3, 0, 0, 2, 8, 2, 2, 4, 1, 0, 9, 0, 2, 2, 7, 8, 1, 9, 8, 9, 5, 6, 3, 7, 7, 0, 9, 4, 6, 0, 9, 9, 5, 9, 6, 4, 0, 7, 5, 8, 4, 9, 7, 0, 8, 0, 4, 4, 2, 5, 9, 3, 3, 6, 3, 2, 0, 6, 2, 2, 2, 4, 1, 9, 5, 5, 8, 8, 3, 4, 8, 8, 5, 1, 0, 9, 3, 9, 3, 2, 0, 0, 8, 3, 6, 1, 1
Offset: 2

Views

Author

Klaus Brockhaus, Apr 24 2010

Keywords

Comments

Continued fraction expansion of 5 + sqrt(26) is A010692.
This is the shape of a 10-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 09 2011

Examples

			5+sqrt(26) = 10.09901951359278483002...
		

Crossrefs

Cf. A010481 (decimal expansion of sqrt(26)), A010692 (all 10's sequence).

Programs

  • Mathematica
    r=10; t = (r + (4+r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    RealDigits[5+Sqrt[26],10,120][[1]] (* Harvey P. Dale, Jun 24 2013 *)
  • PARI
    5+sqrt(26) \\ Michel Marcus, Jul 23 2018

Formula

a(n) = A010481(n-2) for n > 3.
Equals exp(arcsinh(5)), since arcsinh(x) = log(x + sqrt(x^2 + 1)). - Stanislav Sykora, Nov 01 2013
Equals limit_{n->infinity} S(n, 2*sqrt(2*13))/ S(n-1, 2*sqrt(2*13)), with the S-Chebyshev polynomilas (see A049310). - Wolfdieter Lang, Nov 15 2023

A023009 Number of partitions of n into parts of 10 kinds.

Original entry on oeis.org

1, 10, 65, 330, 1430, 5512, 19415, 63570, 195910, 573430, 1605340, 4322110, 11240645, 28341730, 69488650, 166096270, 387890625, 886698670, 1987322415, 4373271870, 9461022285, 20144164040, 42254620785, 87398226990, 178396331100, 359618772656, 716409453320
Offset: 0

Views

Author

Keywords

Comments

a(n) is Euler transform of A010692. - Alois P. Heinz, Oct 17 2008

Crossrefs

Cf. 10th column of A144064. - Alois P. Heinz, Oct 17 2008

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*10, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^10,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)

Formula

G.f.: Product_{m>=1} 1/(1-x^m)^10.
a(n) ~ 5^(11/4) * exp(2 * Pi * sqrt(5*n/3)) / (64 * 3^(11/4) * n^(13/4)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A317633 Numbers congruent to {1, 7, 9} mod 10.

Original entry on oeis.org

1, 7, 9, 11, 17, 19, 21, 27, 29, 31, 37, 39, 41, 47, 49, 51, 57, 59, 61, 67, 69, 71, 77, 79, 81, 87, 89, 91, 97, 99, 101, 107, 109, 111, 117, 119, 121, 127, 129, 131, 137, 139, 141, 147, 149, 151, 157, 159, 161, 167, 169
Offset: 1

Views

Author

Paul Curtz, Aug 02 2018

Keywords

Comments

When multiplied by 10, one gets the numbers ending in "dix" in French (10, 70, 90, 110, ...).

Examples

			G.f. = x + 7*x^2 + 9*x^3+ 11*x^4 + 17*x^5 + 19*x^6 + 21*x^7 + 27*x^8 + ... - _Michael Somos_, Aug 19 2018
		

Crossrefs

Programs

  • Magma
    [n: n in [0..170]|n mod 10 in {1, 7, 9}]; // Vincenzo Librandi, Aug 05 2018
    
  • Mathematica
    Table[2 n + 4 Floor[(n + 1)/3] - 1, {n, 1, 60}] (* Bruno Berselli, Jul 02 2018 *)
    Select[Range[0, 250], MemberQ[{1, 7, 9}, Mod[#, 10]]&] (* Vincenzo Librandi, Aug 05 2018 *)
    CoefficientList[ Series[(x^3 + 2x^2 + 6x + 1)/((x - 1)^2 (x^2 + x + 1)), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 7, 9, 11}, 61] (* Robert G. Wilson v, Aug 08 2018 *)
  • PARI
    x='x+O('x^60); Vec(x*(1+6*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2))) \\ G. C. Greubel, Aug 08 2018

Formula

a(n) = a(n-3) + 10, a(1) = 1, a(2) = 7, a(3) = 9.
From Bruno Berselli, Jul 02 2018: (Start)
G.f.: x*(1 + 6*x + 2*x^2 + x^3)/((1 - x)^2*(1 + x + x^2)).
a(n) = 2*n + 4*floor((n+1)/3) - 1. (End)

Extensions

Definition from Jianing Song, Aug 02 2018

A166577 Inverse binomial transform of A166517.

Original entry on oeis.org

1, 4, -5, 10, -20, 40, -80, 160, -320, 640, -1280, 2560, -5120, 10240, -20480, 40960, -81920, 163840, -327680, 655360, -1310720, 2621440, -5242880, 10485760, -20971520, 41943040, -83886080, 167772160, -335544320, 671088640, -1342177280, 2684354560, -5368709120
Offset: 0

Views

Author

Paul Curtz, Oct 17 2009

Keywords

Comments

The definition assumes that the offset of A166517 is changed to 0.
A166517 mod 9 yields a periodic sequence with period 1, 5, 4, 8, 7, 2.
This set of numbers in the period appears also in A153130, A146501, and A166304.

Crossrefs

Programs

  • Mathematica
    Join[{1,4},NestList[-2#&,-5,40]] (* Harvey P. Dale, Aug 02 2012 *)
    Join[{1, 4}, LinearRecurrence[{-2}, {-5}, 48]] (* G. C. Greubel, May 17 2016 *)

Formula

a(n) = -2*a(n-1), n>2.
a(n) = (-1)^(n+1)*A020714(n-2), n>1.
From Colin Barker, Jan 07 2013: (Start)
a(n) = -5*(-1)^n*2^(n-2) for n>1.
G.f.: (3*x^2+6*x+1)/(2*x+1). (End)
E.g.f.: (9/4) + (3/2)*x - (5/4)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited, comments not concerning this sequence removed, and extended by R. J. Mathar, Oct 21 2009

A317095 a(n) = 40*n.

Original entry on oeis.org

0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880
Offset: 0

Views

Author

Felix Fröhlich, Sep 07 2018

Keywords

Comments

a(n) is equal to the freshwater zone below sea level for a water table of elevation n above sea level in a simplified freshwater-saltwater interface in a coastal water-table aquifer (cf. Barlow, 2003, p. 14, eq. (2) and p. 15, Fig. B-1 and B-2).
From Bruno Berselli, Sep 10 2018: (Start)
After 0, subsequence of A065607: 1/a(n)^2 + 1/(30*n)^2 = 1/(24*n)^2, with n > 0 and a(n) > 30*n.
Also, all positive terms belong to A049094: 2^(40*n)-1 = 1024^(4*n)-1 and (25*41-1)^(4*n)-1 is divisible by 25. (End)

Crossrefs

Row n = 40 of A004247. Intersection of A008587 and A008590.
After 0, subsequence of A005101.

Programs

  • Mathematica
    Table[40 n, {n, 0, 50}] (* or *)
    LinearRecurrence[{2, -1}, {0, 40}, 50] (* or *)
    CoefficientList[Series[40*x/(1 - x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
  • PARI
    a(n) = 40*n
    
  • PARI
    a(n) = if(n==0, 0, if(n==1, 40, 2*a(n-1)-a(n-2)))
    
  • PARI
    concat(0, Vec(40*x/(1-x)^2 + O(x^60)))

Formula

O.g.f.: 40*x/(1 - x)^2.
E.g.f.: 40*x*exp(x). - Bruno Berselli, Sep 10 2018
a(n) = 2*a(n - 1) - a(n - 2) for n > 1. - Stefano Spezia, Sep 07 2018
a(n) = A008586(A008592(n)) = 4*A008592(n).
a(n) = A010692(n)*A008586(n) = 10*A008586(n).
a(n) = A008602(A005843(n)) = 20*A005843(n).
a(n) = A007395(n)*A008602(n) = 2*A008602(n).

A140724 Period 10: 1, 5, 9, 7, 7, 9, 5, 1, 3, 3 repeated.

Original entry on oeis.org

1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7, 9, 5, 1, 3, 3, 1, 5, 9, 7, 7
Offset: 0

Views

Author

Paul Curtz, Jul 12 2008

Keywords

Comments

The last digit of A108981(n).
Also the continued fraction of (290003+sqrt(240183699293))/652402.
Also the decimal expansion of 13073/81819.
The period contains each of the 5 odd digits twice.

Programs

Formula

a(n)+a(n+5) = 10 = A010692(n).
a(n) = a(n+10) .
a(10*k+9+i) = a(10*k+18-i) (palindromic).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+a(n-5). G.f.: -(1+3*x+x^2-3*x^3+3*x^4)/ ((x-1) * (x^4-x^3+x^2-x+1)).

Extensions

Edited by R. J. Mathar, Sep 07 2009

A324471 a(n) = 10 mod n.

Original entry on oeis.org

0, 0, 1, 2, 0, 4, 3, 2, 1, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2019, following a suggestion from Charles Kusniec

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[10,Range[100]] (* Paolo Xausa, Nov 14 2023 *)

Formula

From Elmo R. Oliveira, Aug 03 2024: (Start)
G.f.: x^3*(1 + x - 2*x^2 + 4*x^3 - x^4 - x^5 - x^6 - x^7 + 10*x^8)/(1 - x).
a(n) = 10 for n > 10. (End)
Showing 1-10 of 11 results. Next