cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs

A010722 Constant sequence: the all 6's sequence.

Original entry on oeis.org

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of 3+sqrt(10). - Bruno Berselli, Mar 15 2011
Decimal expansion of Sum_{n >= 0} n/binomial(2*n+1, n) = 2/3. - Bruno Berselli, Sep 14 2015
Decimal expansion of 2/3. - Franklin T. Adams-Watters, Feb 23 2019

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.

Crossrefs

Cf. A145429: decimal expansion of Sum_{n >= 0} n/binomial(2*n, n).
First differences of A008588.

Programs

Formula

G.f.: 6/(1-x). - Bruno Berselli, Mar 15 2011
E.g.f.: 6*e^x. - Vincenzo Librandi, Jan 27 2012
a(n) = floor(1/(-n + csc(1/n))). - Clark Kimberling, Mar 10 2020

A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

4, 0, 5, 8, 4, 5, 1, 5, 1, 3, 7, 7, 3, 9, 7, 1, 6, 6, 9, 0, 6, 6, 0, 6, 4, 1, 2, 0, 7, 6, 9, 6, 1, 4, 6, 3, 3, 4, 7, 3, 8, 2, 0, 1, 4, 0, 9, 9, 3, 7, 0, 1, 2, 6, 3, 8, 7, 0, 4, 3, 2, 5, 1, 7, 9, 4, 6, 6, 3, 8, 1, 3, 2, 2, 6, 1, 2, 5, 6, 5, 5, 3, 2, 8, 3, 1, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.405845151377397166906606412076961463347382014099370126387043...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | this sequence, A372275, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.1, 0.5, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Smallest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372275 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

7, 4, 1, 5, 3, 1, 1, 8, 5, 5, 9, 9, 3, 9, 4, 4, 3, 9, 8, 6, 3, 8, 6, 4, 7, 7, 3, 2, 8, 0, 7, 8, 8, 4, 0, 7, 0, 7, 4, 1, 4, 7, 6, 4, 7, 1, 4, 1, 3, 9, 0, 2, 6, 0, 1, 1, 9, 9, 5, 5, 3, 5, 1, 9, 6, 7, 4, 2, 9, 8, 7, 4, 6, 7, 2, 1, 8, 0, 5, 1, 3, 7, 9, 2, 8, 2, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.741531185599394439863864773280788407074147647141390260119955...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, this sequence, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.6, 0.8, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Middle positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372276 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

9, 4, 9, 1, 0, 7, 9, 1, 2, 3, 4, 2, 7, 5, 8, 5, 2, 4, 5, 2, 6, 1, 8, 9, 6, 8, 4, 0, 4, 7, 8, 5, 1, 2, 6, 2, 4, 0, 0, 7, 7, 0, 9, 3, 7, 6, 7, 0, 6, 1, 7, 7, 8, 3, 5, 4, 8, 7, 6, 9, 1, 0, 3, 9, 1, 3, 0, 6, 3, 3, 3, 0, 3, 5, 4, 8, 4, 0, 1, 4, 0, 8, 0, 5, 7, 3, 0
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.949107912342758524526189684047851262400770937670617783548769...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, this sequence | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 7], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.8, 1.0, 429*x^6 - 693*x^4 + 315*x^ - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Largest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A098318 Decimal expansion of [5, 5, ...] = (5 + sqrt(29))/2.

Original entry on oeis.org

5, 1, 9, 2, 5, 8, 2, 4, 0, 3, 5, 6, 7, 2, 5, 2, 0, 1, 5, 6, 2, 5, 3, 5, 5, 2, 4, 5, 7, 7, 0, 1, 6, 4, 7, 7, 8, 1, 4, 7, 5, 6, 0, 0, 8, 0, 8, 2, 2, 3, 9, 4, 4, 1, 8, 8, 4, 0, 1, 9, 4, 3, 3, 5, 0, 0, 8, 3, 2, 2, 9, 8, 1, 4, 1, 3, 8, 2, 9, 3, 4, 6, 4, 3, 8, 3, 1, 6, 8, 9, 0, 8, 3, 9, 9, 1, 7, 7, 4, 2, 2, 0
Offset: 1

Views

Author

Eric W. Weisstein, Sep 02 2004

Keywords

Comments

The "metallic" constants A001622, A014176 etc. are defined inserting a = 1, 2, 3, 4, ... into (a+sqrt(a^2+4))/2. [Stakhov & Aranson] - R. J. Mathar, Feb 14 2011
This is the length/width ratio of a 5-extension rectangle; see A188640 where the metallic constants are defined for rational numbers. - Clark Kimberling, Apr 09 2011

Examples

			5.19258240356725201562535524577016477814756...
		

Crossrefs

Cf. A001622, A014176, A098316, A098317, A010716 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (5 + Sqrt(29))/2; // G. C. Greubel, Jun 30 2019
    
  • Mathematica
    r=5; t=(r+(4+r^2)^(1/2))/2; FullSimplify[t]
    N[t,130]
    RealDigits[N[t,130]][[1]]
    ContinuedFraction[t,120] (* Clark Kimberling, Apr 09 2011 *)
  • PARI
    (5 + sqrt(29))/2 \\ Charles R Greathouse IV, Jul 24 2013
    
  • Sage
    numerical_approx((5+sqrt(29))/2, digits=100) # G. C. Greubel, Jun 30 2019

Formula

5 plus the constant in A085551. - R. J. Mathar, Sep 02 2008
c^n = A052918(n-2) + A052918(n-1) * c, where c = (5 + sqrt(29))/2. - Gary W. Adamson, Oct 09 2023
Equals lim_{n->infinity} S(n, sqrt(29))/ S(n-1, sqrt(29)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A144180 Number of ways of placing n labeled balls into n unlabeled (but 5-colored) boxes.

Original entry on oeis.org

1, 5, 30, 205, 1555, 12880, 115155, 1101705, 11202680, 120415755, 1362057155, 16151603830, 200144023805, 2584429030505, 34691478901030, 483040313859705, 6963313750468055, 103747357497925880, 1595132080103893655
Offset: 0

Views

Author

Philippe Deléham, Sep 12 2008

Keywords

Comments

a(n) is also the exp transform of A010716. - Alois P. Heinz, Oct 09 2008
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 5 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*5)
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
  • Mathematica
    Table[BellB[n,5],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
  • Sage
    expnums(19, 5) # Zerinvary Lajos, May 15 2009

Formula

a(n) = Sum_{k=0..n} 5^k * A048993(n,k); A048993: Stirling2 numbers.
G.f.: A(x) satisfies 5*(x/(1-x))*A(x/(1-x)) = A(x)-1; five times the binomial transform equals this sequence shifted one place left.
E.g.f.: exp(5*(exp(x)-1)).
G.f.: (G(0) - 1)/(x-1)/5 where G(k) = 1 - 5/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) ~ n^n * exp(n/LambertW(n/5)-5-n) / (sqrt(1+LambertW(n/5)) * LambertW(n/5)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 5^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019

Extensions

More terms from Alois P. Heinz, Oct 09 2008

A048487 a(n) = T(4,n), array T given by A048483.

Original entry on oeis.org

1, 6, 16, 36, 76, 156, 316, 636, 1276, 2556, 5116, 10236, 20476, 40956, 81916, 163836, 327676, 655356, 1310716, 2621436, 5242876, 10485756, 20971516, 41943036, 83886076, 167772156, 335544316, 671088636, 1342177276, 2684354556, 5368709116, 10737418236, 21474836476
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A131113. - Gary W. Adamson, Jun 15 2007
a(n) = sum of (n+1)-th row terms of triangle A134636. This sequence is the binomial transform of 1, 5, 5, (5 continued). - Gary W. Adamson, Nov 04 2007
Row sums of triangle A135856. - Gary W. Adamson, Dec 01 2007

Crossrefs

Cf. A010716 (n-th difference of a(n), a(n-1), ..., a(0)).
Diagonal of A062001.
A column of A119726.

Programs

Formula

a(n) = 5*2^n - 4. - Henry Bottomley, May 29 2001
a(n) = 2*a(n-1) + 4 for n > 0 with a(0) = 1. - Paul Barry, Aug 25 2004
From Colin Barker, Sep 13 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n >= 2.
G.f.: (1 + 3*x)/((1 - x)*(1 - 2*x)). (End)
a(n) = A123208(2*n). - Philippe Deléham, Apr 15 2013
E.g.f.: exp(x)*(5*exp(x) - 4). - Stefano Spezia, Oct 03 2023

A382103 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372267.

Original entry on oeis.org

3, 4, 7, 8, 5, 4, 8, 4, 5, 1, 3, 7, 4, 5, 3, 8, 5, 7, 3, 7, 3, 0, 6, 3, 9, 4, 9, 2, 2, 1, 9, 9, 9, 4, 0, 7, 2, 3, 5, 3, 4, 8, 6, 9, 5, 8, 3, 3, 8, 9, 3, 5, 4, 0, 4, 9, 2, 5, 2, 9, 3, 1, 9, 5, 1, 8, 7, 5, 1, 8, 6, 7, 4, 6, 5, 9, 1, 0, 3, 5, 1, 7, 2, 1, 9, 8, 3
Offset: 0

Views

Author

A.H.M. Smeets, Mar 15 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
4 | A372267, A372268 | this sequence, A382104

Examples

			0.34785484513745385737306394922199940723534869583389...
		

Crossrefs

Cf. A372267.

Programs

  • Mathematica
    RealDigits[1/2 - Sqrt[5/6]/6, 10, 120][[1]] (* Amiram Eldar, Mar 24 2025 *)

Formula

Equals 1/2 - (1/6)*sqrt(5/6).

A382104 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.

Original entry on oeis.org

6, 5, 2, 1, 4, 5, 1, 5, 4, 8, 6, 2, 5, 4, 6, 1, 4, 2, 6, 2, 6, 9, 3, 6, 0, 5, 0, 7, 7, 8, 0, 0, 0, 5, 9, 2, 7, 6, 4, 6, 5, 1, 3, 0, 4, 1, 6, 6, 1, 0, 6, 4, 5, 9, 5, 0, 7, 4, 7, 0, 6, 8, 0, 4, 8, 1, 2, 4, 8, 1, 3, 2, 5, 3, 4, 0, 8, 9, 6, 4, 8, 2, 7, 8, 0, 1, 6
Offset: 0

Views

Author

A.H.M. Smeets, Mar 15 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
4 | A372267, A372268 | A382103, this sequence

Examples

			0.65214515486254614262693605077800059276465130416610645...
		

Crossrefs

Cf. A372268.

Programs

  • Mathematica
    RealDigits[1/2 + Sqrt[5/6]/6, 10, 120][[1]] (* Amiram Eldar, Mar 24 2025 *)
  • PARI
    1/2 + (1/6)*sqrt(5/6) \\ Stefano Spezia, May 22 2025

Formula

Equals 1/2 + (1/6)*sqrt(5/6).
Minimal polynomial: 216*x^2 - 216*x + 49. - Stefano Spezia, May 22 2025
Showing 1-10 of 38 results. Next