cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0

Views

Author

Paul Curtz, Dec 19 2008

Keywords

Comments

Digital root of 2^n.
A regular version of Pitoun's sequence: a(n) = A029898(n+1).
Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.
This sequence and its (again period 6) repeated differences produce the table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, -1, -2, -4, 1, 2, 4, -1, -2, ...
1, 2, -5, -1, -2, 5, 1, 2, -5, -1, -2, ...
1, -7, 4, -1, 7, -4, 1, -7, 4, -1, 7, ...
-8, 11, -5, 8,-11, 5, -8, 11, -5, 8,-11, ...
19,-16, 13,-19, 16,-13, 19,-16, 13,-19, 16, ...
-35, 29,-32, 35,-29, 32,-35, 29,-32, 35,-29, ...
64,-61, 67,-64, 61,-67, 64,-61, 67,-64, 61, ...
If each entry of this table is read modulo 9 we obtain the very regular table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009
Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
a(n) = A007953(2*a(n-1)) = A010888(2*a(n-1)). (End)

Extensions

Edited by R. J. Mathar, Apr 09 2009

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs

A176522 Decimal expansion of (9+sqrt(85))/2.

Original entry on oeis.org

9, 1, 0, 9, 7, 7, 2, 2, 2, 8, 6, 4, 6, 4, 4, 3, 6, 5, 5, 0, 0, 1, 1, 3, 7, 1, 4, 0, 8, 8, 1, 3, 9, 6, 5, 7, 8, 6, 2, 3, 4, 0, 2, 5, 2, 4, 3, 6, 1, 2, 3, 2, 0, 0, 4, 0, 0, 3, 8, 7, 6, 1, 0, 2, 7, 2, 1, 3, 3, 5, 5, 1, 3, 4, 0, 0, 9, 3, 7, 7, 3, 0, 3, 8, 3, 9, 4, 7, 0, 4, 5, 3, 9, 6, 6, 4, 0, 2, 8, 2, 4, 7, 0, 1, 6
Offset: 1

Views

Author

Klaus Brockhaus, Apr 23 2010

Keywords

Comments

Continued fraction expansion of (9+sqrt(85))/2 is A010734.

Examples

			(9+sqrt(85))/2 = 9.10977222864644365500...
		

Crossrefs

Cf. A010536 (decimal expansion of sqrt(85)), A010734 (all 9's sequence), A333345, A049310.

Programs

Formula

Equals lim_{n->infinity} S(n, sqrt(5*17))/S(n-1, sqrt(5*17)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A010680 Decimal expansion of 1/11.

Original entry on oeis.org

0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 9
Offset: 0

Views

Author

Keywords

Comments

Period 2: repeat [0,9].

Examples

			1/11 = 0.0909090909090909090909090909090909090909090909090909090909...
		

Crossrefs

Bisections give: A000004, A010734.

Programs

Formula

a(n) = (9/2)*(1 - (-1)^n) = 9*(n mod 2). - Paolo P. Lava, Oct 31 2006
From Elmo R. Oliveira, Jan 15 2024: (Start)
a(n) = a(n-2) for n >= 2.
a(n) = 3 * A010674(n).
G.f.: 9*x/(1-x^2).
E.g.f.: 9*sinh(x). (End)
a(n) = 9 * A000035(n). - Alois P. Heinz, Jan 16 2024

A021069 Decimal expansion of 1/65.

Original entry on oeis.org

0, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5, 3, 8, 4, 6, 1, 5
Offset: 0

Views

Author

Keywords

Comments

Without the leading 0 also the decimal expansion of 2/13.

Examples

			0.0153846153846...  - _Natan Arie Consigli_, Sep 18 2016
		

Crossrefs

Programs

Formula

Equals 2 - 24/13. See Táfula link. - Michel Marcus, May 31 2024
G.f.: x*(1 + 4*x - 2*x^2 + 6*x^3)/((1 - x)*(1 + x)*(1 - x + x^2)). - Stefano Spezia, Apr 30 2025

A023008 Number of partitions of n into parts of 9 kinds.

Original entry on oeis.org

1, 9, 54, 255, 1035, 3753, 12483, 38709, 113265, 315445, 841842, 2164185, 5382276, 12994290, 30543210, 70066809, 157199805, 345552183, 745377215, 1579915080, 3294664578, 6766656315, 13700560491, 27370137195, 53991639855, 105242612526, 202837976145
Offset: 0

Views

Author

Keywords

Comments

a(n) is Euler transform of A010734. - Alois P. Heinz, Oct 17 2008

Crossrefs

Cf. 9th column of A144064. - Alois P. Heinz, Oct 17 2008

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*9, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^9,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)

Formula

a(n) ~ 3^(5/2) * exp(Pi * sqrt(6*n)) / (256 * n^3). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (9/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(9*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A140657 Powers of 2 with 3 alternatingly added and subtracted.

Original entry on oeis.org

4, -1, 7, 5, 19, 29, 67, 125, 259, 509, 1027, 2045, 4099, 8189, 16387, 32765, 65539, 131069, 262147, 524285, 1048579, 2097149, 4194307, 8388605, 16777219, 33554429, 67108867, 134217725, 268435459, 536870909, 1073741827, 2147483645, 4294967299, 8589934589
Offset: 0

Views

Author

Paul Curtz, Jul 10 2008

Keywords

Crossrefs

Programs

  • Magma
    [2^n+3*(-1)^n: n in [0..40]]; // Vincenzo Librandi, Aug 08 2011
  • Mathematica
    LinearRecurrence[{1,2},{4,-1},40] (* or *) Total/@Partition[Riffle[ Table[ 2^n, {n,0,40}],{3,-3}],2] (* Harvey P. Dale, Nov 13 2014 *)
    CoefficientList[Series[(4 - 5 x) / ((1 + x) (1 - 2 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Jan 14 2015 *)

Formula

a(2n) = A000079(2n+1) + 3, a(2n+1) = A000079(2n+2) - 3.
a(n+1) - 2*a(n) = -9*A033999(n) = (-1)^(n+1)*A010734.
a(n) + a(n+1) = 3^*2^n = A007283(n).
a(2n) + a(2n+1) = A096045(n) + 2.
a(-n) = -A140683(n)/2^n.
O.g.f.: (4-5*x)/((1-2*x)(1+x)). - R. J. Mathar, Jul 29 2008
a(n) = 2^n+3*(-1)^n. - R. J. Mathar , Jul 29 2008

Extensions

Edited and extended by R. J. Mathar, Jul 29 2008
4 inserted as first term and formulas accordingly updated by Jean-François Alcover, Jan 14 2015

A271880 Decimal expansion of the probability that a random real number is evil.

Original entry on oeis.org

1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 8, 3, 3, 7, 7, 7, 3, 1, 6, 2, 8, 6, 4, 7, 6, 0, 5, 5, 2, 7, 9, 4, 6, 2, 5, 9, 4, 0, 6, 5, 1, 3, 3, 3, 2, 7, 7, 5, 6, 1, 9
Offset: 0

Views

Author

Stanislav Sykora, Apr 16 2016

Keywords

Comments

A real number is said to be evil if the cumulative sum of its digits following the decimal point 'hits' the value 666. It is amazing how close this value is to 1/5 (the difference is in A271881).

Examples

			0.19999999999999999999999999999999999999999999999999999999999999978337...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[SeriesCoefficient[(1 - x^9)/(x^10 - 10 x + 9), {x, 0, 665}], 10, 120][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    0.0 + Vec(Ser((1-x^9)/(x^10-10*x+9),x,666))[666]

Formula

Equals A100061(666)/A100062(666).

A337127 Table with 10 columns read by rows: T(n, k) is the number of n-digit positive integers with exactly k distinct base 10 digits (0 < k <= 10).

Original entry on oeis.org

9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 81, 0, 0, 0, 0, 0, 0, 0, 0, 9, 243, 648, 0, 0, 0, 0, 0, 0, 0, 9, 567, 3888, 4536, 0, 0, 0, 0, 0, 0, 9, 1215, 16200, 45360, 27216, 0, 0, 0, 0, 0, 9, 2511, 58320, 294840, 408240, 136080, 0, 0, 0, 0, 9, 5103, 195048, 1587600, 3810240, 2857680, 544320, 0, 0, 0
Offset: 1

Views

Author

Stefano Spezia, Aug 17 2020

Keywords

Examples

			The table T(n, k) begins:
9     0      0       0       0       0  0  0  0  0
9    81      0       0       0       0  0  0  0  0
9   243    648       0       0       0  0  0  0  0
9   567   3888    4536       0       0  0  0  0  0
9  1215  16200   45360   27216       0  0  0  0  0
9  2511  58320  294840  408240  136080  0  0  0  0
...
		

Crossrefs

Cf. A010734, A048993, A052268 (row sums), A073531 (diagonal), A180599 (k = 1), A335843 (k = 2), A337313 (k = 3).

Programs

  • Mathematica
    T[n_,k_]:=9Pochhammer[11-k,k-1]/k!*n!*Coefficient[Series[(Exp[x]-1)^k,{x,0,n}],x,n]; Table[T[n,k],{n,7},{k,10}]//Flatten

Formula

T(n, k) = 9*Pochhammer(11-k, k-1)*n! * [x^n] (exp(x) - 1)^k/k!.
T(n, k) = 9*Pochhammer(11-k, k-1) * [x^n] x^k/Product_{j=1..k} (1-j*x).
T(n, k) = 9*Pochhammer(11-k, k-1)*S2(n, k) where S2(n, k) = A048993(n, k) are the Stirling numbers of the 2nd kind.

A381487 Numbers which are a power of their digital root.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 128, 256, 512, 729, 2401, 6561, 8192, 16384, 32768, 59049, 78125, 524288, 531441, 823543, 1048576, 2097152, 4782969, 33554432, 43046721, 67108864, 134217728, 282475249, 387420489, 1220703125, 2147483648, 3486784401, 4294967296
Offset: 1

Views

Author

Stefano Spezia, Feb 25 2025

Keywords

Examples

			a(12) = 128 is a term since 128 = 2^7 = A010888(128)^7.
		

Crossrefs

Digital root of k^n: A000012 (1), A153130 (2), A100401 (3), A100402 (4), A070366 (5), A100403 (6), A070403 (7), A010689 (8), A010734 (9).

Programs

  • Mathematica
    A010888[n_]:=n - 9*Floor[(n-1)/9]; kmax=5*10^6; a={0,1}; For[k=2, k<=kmax, k++, If[A010888[k]!=1, If[IntegerQ[Log[A010888[k],k]], AppendTo[a,k]]]]; a
  • PARI
    isok(k) = if ((k==0) || (k==1), return(1)); my(d=(k-1)%9+1); if (d>1, d^logint(k, d) == k); \\ Michel Marcus, Feb 26 2025
    
  • PARI
    lista(nn) = my(list = List()); listput(list, 0); listput(list, 1); for (n=2, 9, for (k=1, logint(nn, n), if ((n^k-1)%9+1 == n, listput(list, n^k)););); vecsort(Vec(list)); \\ Michel Marcus, Feb 27 2025

Formula

a(n) = A381491(n)^A381492(n).
Showing 1-10 of 13 results. Next