A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0
References
- Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Crossrefs
Programs
-
Magma
&cat [[1, 2, 4, 8, 7, 5]^^30]; // Wesley Ivan Hurt, Jul 05 2016
-
Maple
seq(op([1, 2, 4, 8, 7, 5]), n=0..40); # Wesley Ivan Hurt, Jul 05 2016
-
Mathematica
Flatten[Table[{1, 2, 4, 8, 7, 5}, {20}]] (* Paul Curtz, Dec 19 2008 *) Table[Mod[2^n, 9], {n, 0, 99}] (* Alonso del Arte, Jan 26 2014 *)
-
PARI
a(n)=lift(Mod(2,9)^n) \\ Charles R Greathouse IV, Apr 21 2015
Formula
a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
Extensions
Edited by R. J. Mathar, Apr 09 2009
Comments