cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A007680 a(n) = (2n+1)*n!.

Original entry on oeis.org

1, 3, 10, 42, 216, 1320, 9360, 75600, 685440, 6894720, 76204800, 918086400, 11975040000, 168129561600, 2528170444800, 40537905408000, 690452066304000, 12449059983360000, 236887827111936000, 4744158915944448000, 99748982335242240000
Offset: 0

Views

Author

Keywords

Comments

Denominators in series for sqrt(Pi/4)*erf(x): sqrt(Pi/4)*erf(x)= x/1 - x^3/3 + x^5/10 - x^7/42 + x^9/216 -+ ...
Appears to be the BinomialMean transform of A000354 (after truncating the first term of A000354). (See A075271 for the definition of BinomialMean.) - John W. Layman, Apr 16 2003
Number of permutations p of {1,2,...,n+2} such that max|p(i)-i|=n+1. Example: a(1)=3 since only the permutations 312,231 and 321 of {1,2,3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003
Stirling transform of A000670(n+1) = [3, 13, 75, 541, ...] is a(n) = [3, 10, 42, 216, ...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n) = [2, 10, 42, 216, ...] is A052875(n+1) = [2, 12, 74, ...]. - Michael Somos, Mar 04 2004
A related sequence also arises in evaluating indefinite integrals of sec(x)^(2k+1), k=0, 1, 2, ... Letting u = sec(x) and d = sqrt(u^2-1), one obtains a(0) = log(u+d) 2*k*a(k) = (2*k-1)*u^(2*k-1)*d + a(k-1). Viewing these as polynomials in u gives 2^k*k!*a(k) = a(0) + d*Sum(i=0..k-1){ (2*i+1)*i!*2^i*u^(2*i+1) }, which is easily proved by induction. Apart from the power of 2, which could be incorporated into the definition of u (or by looking at erf(ix/2)/ i (i=sqrt(-1)), the sum's coefficients form our series and are the reciprocals of the power series terms for -sqrt(-Pi/4)*erf(ix/2)). This yields a direct but somewhat mysterious relationship between the power series of erf(x) and integrals involving sec(x). - William A. Huber (whuber(AT)quantdec.com), Mar 14 2002
When written in factoradic ("factorial base"), this sequence from a(1) onwards gives the smallest number containing two adjacent digits, increasing when read from left to right, whose difference is n-1. - Christian Perfect, May 03 2016
a(n-1)^2 is the number of permutations p of [1..2n] such that Sum_{i=1..2n} abs(p(i)-i) = 2n^2-2. - Fang Lixing, Dec 07 2018
A standard series for the calculation of coordinates on a clothoid (also called cornuspiral):
x = s*(a(0) - (tau^2/a(2)) + (tau^4/a(4)) - (tau^6/a(6)) + ...)
y = s*((tau/a(1)) + (tau^3/a(3)) - (tau^5/a(5)) + ...).
s is the arclength from the clothoids origin to the desired point p(x,y). The tangent at the clothoids origin intersects with the tangent at the point p(x,y) with an angle of tau. - Thomas Scheuerle, Oct 13 2021
a(n) = P_n(1) where P_n(x) is the Pidduck polynomials. - Michael Somos, May 27 2023

Examples

			G.f. = 1 + 3*x + 10*x^2 + 42*x^3 + 216*x^4 + 1320*x^5 + 9360*x^6 + ... - _Michael Somos_, Jan 01 2019
		

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Wirth, Systematisches Programmieren, 1975, exercise 9.3

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167546.
Equals the rows sums of A167556.
(End)

Programs

  • GAP
    a:=List([0..20],n->(2*n+1)*Factorial(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Magma
    [(2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    [(2*n+1)*factorial(n)$n=0..20]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[(2n + 1)*n!, {n, 0, 20}] (* Stefan Steinerberger, Apr 08 2006 *)
  • PARI
    {a(n) = if( n<0, 0, (2*n+1) * n!)}; /* Michael Somos, Mar 04 2004 */
    

Formula

E.g.f.: (1+x)/(1-x)^2.
This is the binomial mean transform of A000354 (after truncating the first term). See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
E.g.f.: (of aerated sequence) 1+x^2/2+sqrt(pi)*(x+x^3/4)*exp(x^2/4)*ERF(x/2). - Paul Barry, Apr 11 2010
G.f.: 1 + x*G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
a(n-2) = (A208528(n)+A208529(n))/2, for n>=2. - Luis Manuel Rivera Martínez, Mar 05 2014
D-finite with recurrence: (-2*n+1)*a(n) +n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1)/2 = A019704 * A099288 = A347910. - Amiram Eldar, Oct 07 2020
Sum_{n>=0} (-1)^n/a(n) = A347909 . - R. J. Mathar, Sep 30 2021

A087017 Decimal expansion of G(5/2) where G is the Barnes G-function.

Original entry on oeis.org

9, 4, 7, 5, 7, 3, 9, 0, 1, 0, 8, 3, 8, 2, 5, 7, 7, 6, 8, 8, 4, 1, 5, 2, 9, 8, 6, 3, 5, 3, 4, 5, 8, 0, 6, 4, 3, 7, 6, 4, 1, 0, 2, 6, 2, 7, 2, 4, 3, 1, 3, 3, 4, 2, 2, 4, 0, 2, 6, 9, 8, 4, 9, 8, 5, 7, 6, 6, 1, 2, 3, 2, 6, 3, 2, 6, 9, 6, 9, 9, 2, 9, 5, 9, 9, 8, 3, 0, 4, 3, 9, 4, 4, 9, 3, 5, 8, 6, 2, 7, 5, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jul 30 2003

Keywords

Examples

			0.94757...
		

Crossrefs

Programs

  • Mathematica
    (E^(1/8)*Pi^(3/4))/(2^(23/24)*Glaisher^(3/2))
    (* Or, since version 7.0, *) RealDigits[BarnesG[5/2], 10, 102] // First (* Jean-François Alcover, Jul 11 2014 *)
  • PARI
    Pi^(3/4)*exp(3/2*zeta'(-1))/2^(23/24) \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals A087016 * A019704. - R. J. Mathar, Jul 24 2025

A190732 Decimal expansion of 2/sqrt(Pi).

Original entry on oeis.org

1, 1, 2, 8, 3, 7, 9, 1, 6, 7, 0, 9, 5, 5, 1, 2, 5, 7, 3, 8, 9, 6, 1, 5, 8, 9, 0, 3, 1, 2, 1, 5, 4, 5, 1, 7, 1, 6, 8, 8, 1, 0, 1, 2, 5, 8, 6, 5, 7, 9, 9, 7, 7, 1, 3, 6, 8, 8, 1, 7, 1, 4, 4, 3, 4, 2, 1, 2, 8, 4, 9, 3, 6, 8, 8, 2
Offset: 1

Views

Author

Alonso del Arte, May 17 2011

Keywords

Comments

According to Weisstein, some mathematicians define erf(z) without reference to this constant.
Also equals the average absolute value of the difference of two independent normally distributed random numbers with mean 0 and variance 1. - Jean-François Alcover, Oct 31 2014
Limit_{n->oo} 2^(1-2*n^2)*n*binomial(2*n^2, n^2) is proper to compute this constant (and also Pi) in a base of power 2. - Ralf Steiner, Apr 23 2017
A gauge point marked "c" on slide rule calculating devices in the 20th century. The Pickworth reference notes its use "in calculating the contents of cylinders". - Peter Munn, Aug 14 2020

Examples

			1.12837916709551257...
		

References

  • Chi Keung Cheung et al., Getting Started with Mathematica, 2nd Ed. New York: J. Wiley (2005) p. 79.
  • C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London (1945), p 53, Gauge Points.

Crossrefs

Programs

  • Mathematica
    RealDigits[2/Sqrt[Pi], 10, 100][[1]]
    RealDigits[Limit[2^(1 - 2 m^2) m Binomial[2 m^2, m^2], m -> Infinity], 10, 100][[1]] (* Ralf Steiner, Apr 22 2017 *)
  • PARI
    2/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

Formula

Equals Sum_{n>=0} (-1)^n*Gamma((n+1)/2)/Gamma(n/2+1). - Jean-François Alcover, Jun 12 2013
Equals 1/A019704. - Michel Marcus, Jan 09 2017
Equals Limit_{n->infinity} A285388(n)/A285389(n). - Ralf Steiner, Apr 22 2017

A087654 Decimal expansion of D(1) where D(x) is the Dawson function.

Original entry on oeis.org

5, 3, 8, 0, 7, 9, 5, 0, 6, 9, 1, 2, 7, 6, 8, 4, 1, 9, 1, 3, 6, 3, 8, 7, 4, 2, 0, 4, 0, 7, 5, 5, 6, 7, 5, 4, 7, 9, 1, 9, 7, 5, 0, 0, 1, 7, 5, 3, 9, 3, 3, 3, 1, 8, 8, 7, 5, 2, 1, 9, 0, 9, 8, 0, 0, 2, 5, 6, 6, 5, 0, 3, 3, 3, 0, 5, 2, 7, 1, 0, 6, 2, 9, 7, 2, 6, 0, 8, 6, 1, 5, 0, 2, 7, 4, 3, 0, 8, 0, 9, 3, 8, 8, 9
Offset: 0

Views

Author

Benoit Cloitre, Sep 25 2003

Keywords

Examples

			0.5380795069127684191363874204075567547919750017539...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 42, page 407.

Programs

  • Mathematica
    RealDigits[ N[ Sqrt[Pi]*Erfi[1]/(2*E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
    RealDigits[DawsonF[1], 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    intnum(t=0, 1, exp(t^2))/exp(1) \\ Michel Marcus, Feb 28 2023

Formula

D(1) = (1/e)*Integral_{t=0..1} exp(t^2) dt.
Equals Integral_{x=0..oo} e^(-x^2) sin(2x) dx = 1F1(1;3/2;-1). - R. J. Mathar, Jul 10 2024
Equals A099288 * sqrt(Pi)/(2e) = A099288 *A019704 * A068985. - R. J. Mathar, Jul 10 2024

A217481 Decimal expansion of sqrt(2*Pi)/4.

Original entry on oeis.org

6, 2, 6, 6, 5, 7, 0, 6, 8, 6, 5, 7, 7, 5, 0, 1, 2, 5, 6, 0, 3, 9, 4, 1, 3, 2, 1, 2, 0, 2, 7, 6, 1, 3, 1, 3, 2, 5, 1, 7, 4, 6, 6, 8, 5, 1, 5, 2, 4, 8, 4, 5, 7, 9, 1, 5, 7, 4, 8, 0, 8, 9, 4, 0, 8, 5, 5, 7, 3, 4, 1, 3, 6, 5, 1, 9, 6, 0, 4, 9, 3, 7, 3, 6, 6, 4, 8, 9, 5, 9, 5, 9, 4, 5, 1, 4, 3, 1, 6, 5, 2, 9, 0, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Oct 04 2012

Keywords

Comments

Equals Integral_{x>=0} sin(x^2) dx.
The generalizations are Integral_{x>=0} exp(i*x^n) dx =
0.6266570686577501... + i*0.6266570686577501... for n=2,
0.7733429420779898... + i*0.4464897557846246... for n=3,
0.8374066967690864... + i*0.3468652110238094... for n=4,
0.8732303655178185... + i*0.2837297451053993... for n=5,
and
Gamma(1/n)*i^(1/n)/n in general, where i is the imaginary unit. - R. J. Mathar, Nov 14 2012
Mean of cycle length (and of tail length) in Pollard rho method for factoring n is sqrt(2*Pi)/4*sqrt(n). - Jean-François Alcover, May 27 2013
If m = (1/2) * sqrt(Pi/2), then the coordinates of the two asymptotic points of the Cornu spiral (also called clothoide) and whose Cartesian parametrization is: x = a * Integral_{0..t} cos(u^2) du and y = a * Integral_{0..t} sin(u^2) du are (a*m, a*m) and (-a*m, -a*m) (see the curve at the MathCurve link). - Bernard Schott, Mar 02 2020
Equals the limit as x approaches infinity of the Fresnel integrals Integral_{0..x} sin(t^2) dt and Integral_{0..x} cos(t^2) dt. - Bernard Schott, Mar 05 2020

Examples

			equals 0.62665706865775012560394132120276131... = A019727 / 4 = sqrt(A019675).
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, this sequence, A019706, A143149, A019710.

Programs

  • Magma
    Sqrt(2*Pi(RealField(100)))/4; // G. C. Greubel, Sep 30 2018
  • Maple
    evalf(sqrt(2*Pi))/4 ;
  • Mathematica
    First@ RealDigits[N[Sqrt[2 Pi]/4, 105]] (* Michael De Vlieger, Sep 24 2018 *)
  • Maxima
    fpprec : 100; ev(bfloat(sqrt(2*%pi)))/4; /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    sqrt(2*Pi)/4 \\ Altug Alkan, Sep 08 2018
    
  • Sage
    ((sqrt(2*pi))/4).n(digits=100) # Jani Melik, Oct 05 2012
    

Formula

From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
From Bernard Schott, Mar 02 2020: (Start)
Equals Integral_{x >= 0} cos(x^2) dx or Integral_{x >= 0} sin(x^2) dx.
Equals sqrt(Pi/8) or (1/2)*sqrt(Pi/2). (End)

A113550 a(n) = product of n successive numbers up to n, if n is odd a(n) = n*(n-1)*.. = n!, if n is even a(n) = n(n+1)(n+2)... 'n' terms.

Original entry on oeis.org

1, 6, 6, 840, 120, 332640, 5040, 259459200, 362880, 335221286400, 39916800, 647647525324800, 6227020800, 1748648318376960000, 1307674368000, 6288139352883548160000, 355687428096000, 29051203810321992499200000, 121645100408832000, 167683548393178540705382400000
Offset: 1

Views

Author

Amarnath Murthy, Nov 03 2005

Keywords

Examples

			a(3) = 3*2*1 = 6.
a(4) = 4*5*6*7 = 840.
		

Crossrefs

Programs

  • Mathematica
    n = 1; anfunc[n_] := (If [EvenQ[n], {an = n, Do[an = an*(n + i), {i, n - 1}]}, an = n! ]; an); Table[anfunc[n], {n, 1, 20}] (* Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006 *)

Formula

a(2n-1) = (2n-1)!, a(2n) = (4n-1)!/(2n-1)!.
a(2n-1)*a(2n) = (4n-1)!.
Sum_{n>=1} 1/a(n) = sinh(1) + (sqrt(Pi)/2) * (exp(1/4) * erf(1/2) - exp(-1/4) * erfi(1/2)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Elizabeth A. Blickley (Elizabeth.Blickley(AT)gmail.com), Mar 10 2006

A245885 Decimal expansion of Gamma(7/2), where Gamma is Euler's gamma function.

Original entry on oeis.org

3, 3, 2, 3, 3, 5, 0, 9, 7, 0, 4, 4, 7, 8, 4, 2, 5, 5, 1, 1, 8, 4, 0, 6, 4, 0, 3, 1, 2, 6, 4, 6, 4, 7, 2, 1, 7, 7, 4, 5, 4, 0, 5, 2, 3, 0, 2, 2, 9, 4, 7, 5, 8, 6, 5, 4, 0, 0, 8, 8, 9, 6, 0, 5, 9, 7, 4, 2, 0, 8, 6, 5, 8, 6, 0, 8, 1, 8, 5, 3, 4, 0, 0, 7, 8, 0, 3, 2, 4, 8, 1, 3, 8, 4, 7, 7, 1, 2, 4, 7, 6, 5, 5, 4
Offset: 1

Views

Author

Jean-François Alcover, Aug 05 2014

Keywords

Examples

			3.3233509704478425511840640312646472177454052302294758654008896...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[7/2], 10, 104] // First
  • PARI
    gammah(3) \\ Michel Marcus, Feb 11 2016

Formula

Gamma(7/2) = (15/8)*sqrt(Pi) = (5/2)*A245884.
Equals Integral_{x=0..oo} exp(-x^(2/5)) dx. - Ilya Gutkovskiy, Apr 10 2024
Equals 30*A019718. - Hugo Pfoertner, Apr 10 2024

A143149 Decimal expansion of 5*sqrt(2*Pi)/4.

Original entry on oeis.org

3, 1, 3, 3, 2, 8, 5, 3, 4, 3, 2, 8, 8, 7, 5, 0, 6, 2, 8, 0, 1, 9, 7, 0, 6, 6, 0, 6, 0, 1, 3, 8, 0, 6, 5, 6, 6, 2, 5, 8, 7, 3, 3, 4, 2, 5, 7, 6, 2, 4, 2, 2, 8, 9, 5, 7, 8, 7, 4, 0, 4, 4, 7, 0, 4, 2, 7, 8, 6, 7, 0, 6, 8, 2, 5, 9, 8, 0, 2, 4, 6, 8, 6, 8, 3, 2, 4, 4, 7, 9, 7, 9, 7, 2, 5, 7, 1, 5, 8, 2, 6, 4, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 27 2008

Keywords

Comments

Upper bound using Shannon entropy arising in randomly-projected hypercubes.

Examples

			3.13328534328875...
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, A217481, A019706, this sequence, A019710.
Cf. A143148 (lower bound).

Programs

  • Mathematica
    RealDigits[5*Sqrt[2*Pi]/4, 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)
  • PARI
    5*sqrt(2*Pi)/4 \\ Michel Marcus, Mar 06 2020

Formula

Equals 10*Integral_{x>=0} x*sin(x^4) dx or 10*Integral_{x>=0} x*cos(x^4) dx (Fresnel integrals).

Extensions

Edited and a(100) corrected by Georg Fischer, Jul 16 2021

A194940 The Square Peg in the Round Hole constant.

Original entry on oeis.org

2, 8, 4, 4, 5, 8, 5, 5, 0, 4, 0, 9, 8, 0, 1, 8, 7, 8, 1, 5, 9, 2, 0, 1, 0, 1, 8, 1, 2, 6, 9, 3, 1, 7, 4, 5, 3, 3, 0, 0, 5, 2, 8, 3, 0, 7, 8, 9, 4, 6, 2, 6, 9, 8, 0, 4, 5, 8, 7, 7, 5, 0, 0, 3, 0, 1, 1, 8, 9, 8, 9, 5, 8, 4, 8, 2, 9, 2, 3, 9, 7, 5, 3, 8, 6, 9, 4, 7, 2, 3, 6, 0, 6, 2, 2, 7, 2, 2, 1, 4, 6, 7, 6, 4, 6, 1, 7, 2, 4, 4, 7
Offset: 0

Views

Author

Keywords

Comments

Given a unit circle and a square of equal area, what is the amount of the square peg shavings (or filings) which would allow the peg to be inserted into the circle? It turns out to be not quite two sevenths.

Examples

			0.28445855040980187815920101812693174533005283078946269804587750...
		

References

  • Daniel Zwillinger, Editor, CRC Standard Mathematical Tables and Formulae, 31st Edition, Chapman & Hall/CRC, Boca Raton, Section 4.6.6 Circles, page 334 & figure 4.18, 2003.

Crossrefs

Programs

  • Mathematica
    RealDigits[ 4*ArcCos[ Sqrt[Pi]/2] - Sqrt[ Pi(4 - Pi)], 10, 111][[1]]
    RealDigits[Pi + Sqrt[ 2Pi(2 - Sqrt[Pi (4 - Pi)])] - 4 ArcSin[ Sqrt[Pi/4]], 10, 111][[1]] (* Robert G. Wilson v, Sep 20 2011 *)
  • PARI
    4*acos(sqrt(Pi)/2) - sqrt(Pi*(4-Pi)) \\ G. C. Greubel, Mar 28 2017

Formula

Area = 4*arccos(sqrt(Pi)/2) - sqrt(Pi*(4-Pi)).
Area = Pi + sqrt(2*Pi(2 - sqrt(Pi*(4 - Pi)))) - 4*arcsin(sqrt(Pi/4)). - Robert G. Wilson v, Mar 19 2014

A245884 Decimal expansion of Gamma(5/2), where Gamma is Euler's gamma function.

Original entry on oeis.org

1, 3, 2, 9, 3, 4, 0, 3, 8, 8, 1, 7, 9, 1, 3, 7, 0, 2, 0, 4, 7, 3, 6, 2, 5, 6, 1, 2, 5, 0, 5, 8, 5, 8, 8, 8, 7, 0, 9, 8, 1, 6, 2, 0, 9, 2, 0, 9, 1, 7, 9, 0, 3, 4, 6, 1, 6, 0, 3, 5, 5, 8, 4, 2, 3, 8, 9, 6, 8, 3, 4, 6, 3, 4, 4, 3, 2, 7, 4, 1, 3, 6, 0, 3, 1, 2, 1, 2, 9, 9, 2, 5, 5, 3, 9, 0, 8, 4, 9, 9
Offset: 1

Views

Author

Jean-François Alcover, Aug 05 2014

Keywords

Examples

			1.32934038817913702047362561250585888709816209209179034616...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[5/2], 10, 100] // First
  • PARI
    gammah(2) \\ Michel Marcus, Feb 11 2016

Formula

Equals (3/4)*sqrt(Pi) = (3/2)*A019704.
Equals Sum_{k>=1} (k+1/2)!/(k+2)!. - Amiram Eldar, Jun 19 2023
Equals Integral_{x=0..oo} exp(-x^(2/3)) dx. - Ilya Gutkovskiy, Apr 10 2024
Showing 1-10 of 19 results. Next