A005943 Factor complexity (number of subwords of length n) of the Golay-Rudin-Shapiro binary word A020987.
1, 2, 4, 8, 16, 24, 36, 46, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504
Offset: 0
Examples
All 8 subwords of length three (000, 001, ..., 111) occur in A020987, so a(3) = 8.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999
- Jean-Paul Allouche, The Number of Factors in a Paperfolding Sequence, Bulletin of the Australian Mathematical Society, volume 46, number 1, August 1992, pages 23-32. Section 6 theorem 2, a(n) = P_{w_i}(n).
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Maple
# Naive Maple program, useful for getting initial terms of factor complexity FC of a sequence b1[]. N. J. A. Sloane, Jun 04 2019 FC:=[0]; # a(0)=0 from the empty subword for L from 1 to 12 do lis := {}; for n from 1 to nops(b1)-L do s:=[seq(b1[i],i=n..n+L-1)]; lis:={op(lis),s}; od: FC:=[op(FC),nops(lis)]; od: FC;
-
Mathematica
CoefficientList[Series[(1 + x^2 + 2 x^3 + 4 x^4 + 4 x^6 - 2 x^7 - 2 x^9)/(1 - x)^2, {x, 0, 64}], x] (* Michael De Vlieger, Oct 14 2021 *)
-
PARI
first(n) = n = max(n, 10); concat([1, 2, 4, 8, 16, 24, 36, 46], vector(n-8,i,8*i+48)) \\ David A. Corneth, Apr 28 2021
Formula
G.f.: (1+x^2+2*x^3+4*x^4+4*x^6-2*x^7-2*x^9)/(1-x)^2. - Joerg Arndt, Jun 10 2012
From Kevin Ryde, Aug 18 2020: (Start)
a(1..7) = 2,4,8,16,24,36,46, then a(n) = 8*n - 8 for n>=8. [Allouche]
a(n) = 2*A337120(n-1) for n>=1. [Allouche, end of proof of theorem 2]
(End)
Extensions
Minor edits by N. J. A. Sloane, Jun 06 2012
a(14)-a(32) added by Joerg Arndt, Jun 10 2012
a(33)-a(36) added by Joerg Arndt, Oct 28 2012
Comments