cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A050801 Numbers k such that k^2 is expressible as the sum of two positive cubes in at least one way.

Original entry on oeis.org

3, 4, 24, 32, 81, 98, 108, 168, 192, 228, 256, 312, 375, 500, 525, 588, 648, 671, 784, 847, 864, 1014, 1029, 1183, 1225, 1261, 1323, 1344, 1372, 1536, 1824, 2048, 2187, 2496, 2646, 2888, 2916, 3000, 3993, 4000, 4200, 4225, 4536, 4563, 4644, 4704, 5184, 5324
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Analogous solutions exist for the sum of two identical cubes z^2 = 2*r^3 (e.g., 864^2 = 2*72^3). Values of 'z' are the terms in A033430, values of 'r' are the terms in A001105.
First term whose square can be expressed in two ways is 77976; 77976^2 = 228^3 + 1824^3 = 1026^3 + 1710^3. - Jud McCranie
First term whose square can be expressed in three ways is 3343221000; 3343221000^2 = 279300^3 + 2234400^3 = 790020^3 + 2202480^3 = 1256850^3 + 2094750^3.
First term whose square can be expressed in four ways <= 42794271007595289; 42794271007595289^2 = 14385864402^3 + 122279847417^3 = 55172161278^3 + 118485773289^3 = 64117642953^3 + 116169722214^3 = 96704977369^3 + 97504192058^3.
First term whose square can be expressed in five ways <= 47155572445935012696000; 47155572445935012696000^2 = 94405759361550^3 + 1305070263601650^3 = 374224408544280^3 + 1294899176535720^3 = 727959282778000^3 + 1224915311765600^3 = 857010857812200^3 + 1168192425418200^3 = 1009237516560000^3 + 1061381454915600^3.
After a(1) = 3 this is always composite, because factorization of the polynomial a^3 + b^3 into irreducible components over Z is a^3 + b^3 = (b+a)*(b^2 - ab + b^2). They may be semiprimes, as with 671 = 11 * 61, and 1261 = 13 * 97. The numbers can be powers in various ways, as with 32 = 2^5, 81 = 3^4, 256 = 2^8, 784 = 2^4 * 7^2 , 1225 = 5^2 * 7^2, and 2187 = 3^7. - Jonathan Vos Post, Feb 05 2011
If n is a term then n*b^3 is also a term for any b, e.g., 3 is a term hence 3*2^3 = 24, 3*3^3 = 81 and also 3*4^3 = 192 are terms. Sequence of primitive terms may be of interest. - Zak Seidov, Dec 11 2013
First noncubefree primitive term is 168 = 21*2^3 (21 is not a term of the sequence). - Zak Seidov, Dec 16 2013
From XU Pingya, Apr 10 2021: (Start)
Every triple (a, b, c) (with a^2 = b^3 + c^3) can produce a nontrivial parametric solution (x, y, z) of the Diophantine equation x^2 + y^3 + z^3 = d^4.
For example, to (1183, 65, 104), there is such a solution (d^2 - (26968032*d)*t^3 + 1183*8232^3*t^6, (376*d)*t - 65*8232^2*t^4, (92*d)*t - 104*8232^2*t^4).
To (77976, 228, 1824), there is (d^2 - (272916*d)*t^3 + 77976*57^3*t^6, (52*d)*t - 228*57^2*t^4, (74*d)*t - 1824*57^2*t^4).
Or to (77976, 1026, 1719), there is (d^2 - (25992*d)*t^3 + 77976*19^3*t^6, (37*d)*t - 1026*19^2*t^4, (11*d)*t - 1710*19^2*t^4). (End)

Examples

			1183^2 = 65^3 + 104^3.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Programs

  • Maple
    A050801 := proc(n)
        option remember ;
        local a,x,y ;
        if n =1 then
            3
        else
            for a from procname(n-1)+1 do
                for x from 1 do
                    if x^3 >= a^2 then
                        break ;
                    end if;
                    for y from 1 to x do
                        if x^3+y^3 = a^2 then
                            return a ;
                        end if;
                    end do:
                end do:
            end do:
        end if;
    end proc:
    seq(A050801(n),n=1..20) ; # R. J. Mathar, Jan 22 2025
  • Mathematica
    Select[Range[5350], Reduce[0 < x <= y && #^2 == x^3 + y^3, {x,y}, Integers] =!= False &] (* Jean-François Alcover, Mar 30 2011 *)
    Sqrt[#]&/@Union[Select[Total/@(Tuples[Range[500],2]^3),IntegerQ[ Sqrt[ #]]&]] (* Harvey P. Dale, Mar 06 2012 *)
    Select[Range@ 5400, Length@ DeleteCases[PowersRepresentations[#^2, 2, 3], w_ /; Times @@ w == 0] > 0 &] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    is(n)=my(N=n^2); for(k=sqrtnint(N\2,3),sqrtnint(N-1,3), if(ispower(N-k^3,3), return(n>1))); 0 \\ Charles R Greathouse IV, Dec 13 2013

Formula

a(n) = sqrt(A050802(n)). - Jonathan Sondow, Oct 28 2013

Extensions

More terms from Michel ten Voorde and Jud McCranie

A184536 a(n) = floor(1/{(1+n^4)^(1/4)}), where {} = fractional part.

Original entry on oeis.org

5, 32, 108, 256, 500, 864, 1372, 2048, 2916, 4000, 5324, 6912, 8788, 10976, 13500, 16384, 19652, 23328, 27436, 32000, 37044, 42592, 48668, 55296, 62500, 70304, 78732, 87808, 97556, 108000, 119164, 131072, 143748, 157216, 171500, 186624, 202612, 219488, 237276, 256000, 275684, 296352, 318028, 340736, 364500, 389344, 415292, 442368, 470596, 500000, 530604, 562432, 595508, 629856, 665500, 702464, 740772, 780448, 821516, 864000, 907924, 953312, 1000188
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

For n >= 1, the value of (n^4+1)^(1/4) is just slightly above n, so the fractional part is (n^4+1)^(1/4)-n. For n > 1, then, 4*n^3 < 1/((1+n^4)^(1/4)-n) < 4*n^3+1. [Proof that 4*n^3*((1+n^4)^(1/4)-n) < 1 follows easily by isolating the quartic root and raising to the 4th power; similarly, 1 < (4*n^3+1)*((1+n^4)^(1/4)-n) needs a sign estimation of an 8th-order polynomial.] In conclusion, a(n)=A033430(n) for n > 1. - Bruno Berselli, Jan 30 2011

Crossrefs

Cf. A184537. Essentially the same as A033430.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^4+1)^(1/4)];
    q[n_]:=Floor[1/p[n]];
    Table[q[n],{n,1,80}]
    LinearRecurrence[{4,-6,4,-1},{5,32,108,256,500},70] (* Harvey P. Dale, Dec 14 2023 *)

Formula

a(n) = floor[1/{(1+n^4)^(1/4)}], where {}=fractional part.
G.f.: x*(x^4-4*x^3+10*x^2+12*x+5)/(x-1)^4. - Colin Barker, Sep 21 2012

A244725 a(n) = 5*n^3.

Original entry on oeis.org

0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).

Programs

  • Magma
    [5*n^3: n in [0..40]];
    
  • Magma
    I:=[0,5,40,135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
  • PARI
    a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A036487 a(n) = floor((n^3)/2).

Original entry on oeis.org

0, 0, 4, 13, 32, 62, 108, 171, 256, 364, 500, 665, 864, 1098, 1372, 1687, 2048, 2456, 2916, 3429, 4000, 4630, 5324, 6083, 6912, 7812, 8788, 9841, 10976, 12194, 13500, 14895, 16384, 17968, 19652, 21437, 23328, 25326, 27436, 29659, 32000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033430 (bisection), A268201 (bisection).

Programs

  • Maple
    [ seq(floor((n^3)/2), n=0..100) ];
  • Mathematica
    A036487[n_]:=Floor[n^3/2]
    Floor[Range[0,40]^3/2] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,0,4,13,32},50] (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    a(n)=n^3\2 \\ Charles R Greathouse IV, Jul 18 2014
  • Sage
    [floor(n^3/2) for n in range(0,41)] # Zerinvary Lajos, Dec 02 2009
    

Formula

G.f. x^2*(4 + x + x^2)/((1 + x)*(1 - x)^4). - R. J. Mathar, Jan 29 2011
From Stefano Spezia, Sep 09 2022: (Start)
a(n) = ((-1)^n - 1 + 2*n^3)/4.
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) - (1 - x - 3*x^2 - x^3)*sinh(x))/2. (End)

Extensions

Corrupted b-file corrected by Michael De Vlieger, Jul 18 2014

A198063 Triangle read by rows (n >= 0, 0 <= k <= n, m = 3); T(n,k) = Sum{j=0..m} Sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).

Original entry on oeis.org

0, 1, 1, 8, 4, 8, 27, 15, 15, 27, 64, 40, 32, 40, 64, 125, 85, 65, 65, 85, 125, 216, 156, 120, 108, 120, 156, 216, 343, 259, 203, 175, 175, 203, 259, 343, 512, 400, 320, 272, 256, 272, 320, 400, 512, 729, 585, 477, 405, 369, 369, 405, 477, 585, 729
Offset: 0

Views

Author

Peter Luschny, Oct 26 2011

Keywords

Comments

Read as an infinite symmetric square array, this is the table A(n,k)=(n+k)(n^2+k^2), cf. A321500 for the triangle with k <= n. - M. F. Hasler, Nov 22 2018

Examples

			[0]                   0
[1]                  1, 1
[2]                8, 4, 8
[3]             27, 15, 15, 27
[4]           64, 40, 32, 40, 64
[5]        125, 85, 65, 65, 85, 125
[6]   216, 156, 120, 108, 120, 156, 216
[7] 343, 259, 203, 175, 175, 203, 259, 343
From _M. F. Hasler_, Nov 22 2018: (Start)
Can also be seen as the square array A(n,k)=(n+k)*(n^2 + k^2) read by antidiagonals:
n | k: 0   1   2   3 ...
--+----------------------
0 |    0   1   8  27 ...
1 |    1   4  15  40 ...
2 |    8  15  32  65 ...
3 |   27  40  65 108 ...
...      ...     ...
(End)
		

Crossrefs

Programs

  • Magma
    [[2*k^2*n-2*k*n^2+n^3: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 23 2018
    
  • Maple
    A198063 := (n,k) -> 2*k^2*n-2*k*n^2+n^3:
  • Mathematica
    t[n_, k_] := 2 k^2*n - 2 k*n^2 + n^3; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
  • PARI
    A198063(n,k)=2*k^2*n-2*k*n^2+n^3 \\ See also A321500. - M. F. Hasler, Nov 22 2018
    
  • Sage
    [[ 2*k^2*n-2*k*n^2+n^3 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 23 2018

Formula

T(n,k) = 2*k^2*n - 2*k*n^2 + n^3.
T(n,0) = T(n,n) = n^m = n^3 = A000578(n).
T(2*n,n) = (m+1)n^m = 4*n^3 = A033430(n).
T(2*n+1,n+1) = (n+1)^(m+1) - n^(m+1) = (n+1)^4 - n^4 = A005917(n).
Sum{k=0..n} T(n,k) = (2*n^4 + 3*n^3 + n^2)/3 = A098077(n).
T(n+1,k+1)*C(n,k)^4/(k+1)^3 = A197653(n,k).

A332822 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 2 (mod 3).

Original entry on oeis.org

3, 4, 7, 10, 13, 18, 19, 22, 24, 25, 29, 32, 34, 37, 42, 43, 45, 46, 53, 55, 56, 60, 61, 62, 71, 78, 79, 80, 81, 82, 85, 89, 94, 98, 99, 101, 104, 105, 107, 108, 113, 114, 115, 118, 121, 131, 132, 134, 139, 140, 144, 146, 150, 151, 152, 153, 155, 163, 166, 173, 174, 176, 181, 182, 187, 189, 192, 193, 194, 195, 199, 200, 204
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, A332821 and this sequence.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332821. This sequence has the primes with even indexes, those in A031215.
The terms are the even numbers in A332820 halved. The terms are also the numbers m such that 5m is in A332820, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332821, and so on for alternate primes: 7, 13, 19, 29 etc.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, we get the same set of numbers as we get from halving the even terms of this sequence, and A332821 consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332820, which consists exactly of those numbers. The numbers that are one fifth of the terms that are multiples of 5 constitute A332821, and for larger primes, an alternating pattern applies as described in the previous paragraph.
The product of any 2 terms of this sequence is in A332821, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332821, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of terms valued -1 in A332823; equivalently, numbers in row 3k-1 of A277905 for some k >= 1.
Subsequences: intersection of A026478 and A066207, A031215 (prime terms), A033430\{0}, A117642\{0}, A169604, A244727\{0}, A244729\{0}, A338910 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 204, Mod[Total@ #, 3] == 2 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332822(n) =  { my(f = factor(n)); (2==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332821(k) : k >= 1} U {A003961(A332821(k)) : k >= 1}.
{a(n) : n >= 1} = {A332821(k)^2 : k >= 1} U {A331590(2, A332821(k)) : k >= 1}.

A103254 Positive integers x such that there exist positive integers y and z satisfying x^3 + y^3 = z^2.

Original entry on oeis.org

1, 2, 4, 7, 8, 9, 10, 11, 14, 16, 18, 21, 22, 23, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 44, 46, 49, 50, 56, 57, 63, 64, 65, 70, 72, 78, 81, 84, 86, 88, 90, 91, 92, 95, 98, 99, 100, 104, 105, 110, 112, 114, 121, 122, 126, 128, 129, 130, 132, 136, 140, 144, 148, 152, 154, 158, 160, 162, 169, 170, 175, 176, 177, 183, 184, 189, 190, 193, 196, 198, 200
Offset: 1

Views

Author

Cino Hilliard, Mar 20 2005

Keywords

Comments

A001105 is a subset (excluding 0), since (x, y, z) = (A001105(k), A001105(k), A033430(k)) satisfies x^3 + y^3 = z^2. - R. J. Mathar, Sep 11 2006
A parametric solution: {x,y,z} = {g*(4*e + g)*(4*e^2 + 8*e*g + g^2), 2*g*(4*e + g)*(-2*e^2 +2*e*g + g^2), 3*g^2*(4*e + g)^2*(4*e^2 + 2*e*g + g^2)}, provided (-2*e^2 +2*e*g + g^2) > 0. - James Mc Laughlin, Jan 27 2007
Allowing y = 0 would give the same sequence, since x^3 = z^2 implies x is a square, and all squares are terms since (t^2)^3 + (2*t^2)^3 = (3*t^3)^2. On the other hand, allowing y to be negative would introduce new terms: 71, 74, and 155 would be terms since 71^3 + (-23)^3 = 588^2, 74^3 + (-47)^3 = 549^2, and 155^3 + (-31)^3 = 1922^2. See A356720. - Jianing Song, Aug 24 2022

Examples

			x=7, y=21, 7^3 + 21^3 = 98^2. 7 is the 4th term in the list.
Other solutions are (x, y, z)=(1, 2, 3), (4, 8, 24), (7, 21, 98), (9, 18, 81), (10, 65, 525), (11, 37, 228), (14, 70, 588), (16, 32, 192), (21, 7, 98), (22, 26, 168), (23, 1177, 40380), ...
		

Crossrefs

See A103255 for another version.

Programs

  • Magma
    [ k : k in [1..200] | exists{P : P in IntegralPoints(EllipticCurve([0,k^3])) | P[1] gt 0 and P[2] ne 0 } ]; // Geoff Bailey, Jan 28 2007

Extensions

Recomputed and extended to 48 terms by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using Magma, Jan 28 2007
Terms 104..200 added by Joerg Arndt, Sep 29 2012

A317297 a(n) = (n - 1)*(4*n^2 - 8*n + 5).

Original entry on oeis.org

0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2018

Keywords

Comments

Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024

Crossrefs

First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = (n - 1)*(4*n^2 - 8*n + 5)
    
  • PARI
    concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018

Formula

a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024

A321491 Numbers of the form (x+y)(x^2+y^2), with integers x > y > 0.

Original entry on oeis.org

15, 40, 65, 85, 120, 156, 175, 203, 259, 272, 320, 369, 400, 405, 477, 520, 580, 585, 671, 680, 715, 803, 820, 888, 935, 960, 1080, 1105, 1111, 1157, 1248, 1261, 1400, 1417, 1464, 1484, 1624, 1625, 1695, 1755, 1820, 1875, 1885, 2055, 2072, 2080, 2176, 2295, 2336, 2380, 2465
Offset: 1

Views

Author

Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018

Keywords

Comments

If y = 0 is allowed, this adds the cubes A000578; if x = y is allowed, this adds A033430 = numbers of the form 4*x^3. None of these variants is in the OEIS yet.

Examples

			Let f(x,y) = (x+y)(x^2+y^2) = A321490(x,y), then:
a(1) = f(2,1) = 3*5 = 15,a(2) = f(3,1) = 4*10 = 40, a(3) = f(3,2) = 5*13 = 65,a(4) = f(4,1) = 5*17 = 85,a(5) = f(4,2) = 6*20 = 120, etc.
		

Crossrefs

Programs

  • PARI
    list_A321491(L=1e4,S=[])={for(m=2, sqrtnint(L, 3), for(n=1, m-1, if(L
    				

A321500 Triangular table T(n,k) = (n+k)*(n^2+k^2), n >= k >= 0; read by rows n = 0, 1, 2, ...

Original entry on oeis.org

0, 1, 4, 8, 15, 32, 27, 40, 65, 108, 64, 85, 120, 175, 256, 125, 156, 203, 272, 369, 500, 216, 259, 320, 405, 520, 671, 864, 343, 400, 477, 580, 715, 888, 1105, 1372, 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048
Offset: 0

Views

Author

M. F. Hasler, Nov 22 2018

Keywords

Examples

			The table starts:
n | T(n,k), k = 0..n:
0 |   0;
1 |   1,   4;
2 |   8,  15,  32;
3 |  27,  40,  65, 108;
4 |  64,  85, 120, 175, 256;
5 | 125, 156, 203, 272, 369,  500;
6 | 216, 259, 320, 405, 520,  671,  864;
7 | 343, 400, 477, 580, 715,  888, 1105, 1372;
8 | 512, 585, 680, 803, 960, 1157, 1400, 1695, 2048;
etc.
		

Crossrefs

Cf. A000578 (column 0: the cubes), A033430 (diagonal: 4*n^3), A053698 (column 1).
Cf. A198063 (read as A(n,k)=(n+k)*(n^2+k^2)).

Programs

  • Magma
    [[(n+k)*(n^2+k^2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    t[n_, k_] := (n + k) (n^2 + k^2); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 22 2018 *)
  • PARI
    A321500(n, k)=(n+k)*(n^2+k^2)
    A321500_row(n)=vector(n+1, k, (n+k--)*(n^2+k^2))
    A321500_list(N=11)=concat(apply(A321500_row, [0..N]))
    
  • Sage
    [[(n+k)*(n^2+k^2) for k in range(n+1)] for n in range(12)] # G. C. Greubel, Nov 23 2018

Formula

Sum_{k=0..n} T(n,k) = 5*n^2*(n+1)*(5*n+1)/12 = 5*A117066(n). - G. C. Greubel, Nov 23 2018
Showing 1-10 of 17 results. Next